中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

升温及淹水条件下土著与外来盐沼植物的生长和光合特征比较

李诗华 解丽娜 陈威 费蓓莉 袁琳 葛振鸣

李诗华, 解丽娜, 陈威, 费蓓莉, 袁琳, 葛振鸣. 升温及淹水条件下土著与外来盐沼植物的生长和光合特征比较[J]. 华东师范大学学报(自然科学版), 2019, (1): 144-155. doi: 10.3969/j.issn.1000-5641.2019.01.016
引用本文: 李诗华, 解丽娜, 陈威, 费蓓莉, 袁琳, 葛振鸣. 升温及淹水条件下土著与外来盐沼植物的生长和光合特征比较[J]. 华东师范大学学报(自然科学版), 2019, (1): 144-155. doi: 10.3969/j.issn.1000-5641.2019.01.016
LI Shi-hua, XIE Li-na, CHEN Wei, FEI Bei-li, YUAN Lin, GE Zhen-ming. Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 144-155. doi: 10.3969/j.issn.1000-5641.2019.01.016
Citation: LI Shi-hua, XIE Li-na, CHEN Wei, FEI Bei-li, YUAN Lin, GE Zhen-ming. Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 144-155. doi: 10.3969/j.issn.1000-5641.2019.01.016

升温及淹水条件下土著与外来盐沼植物的生长和光合特征比较

doi: 10.3969/j.issn.1000-5641.2019.01.016
基金项目: 

国家自然科学基金 41871088

国家自然科学基金 41571083

国家重点研发计划 2017YFC0506001

国家重点研发计划 2016YFE0133700

国家重点实验室自主课题 2015KYYW03

详细信息
    作者简介:

    李诗华, 男, 硕士研究生, 研究方向为湿地生态学.E-mail:13105090103@163.com

    通讯作者:

    袁琳, 女, 副研究员, 硕士生导师, 研究方向为湿地生态学.E-mail:lyuan@sklec.ecnu.edu.cn

    葛振鸣, 男, 研究员, 博士生导师, 研究方向为湿地生态学.E-mail:zmge@sklec.ecnu.edu.cn

  • 中图分类号: Q945.79

Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions

  • 摘要: 针对我国海岸带典型土著植物芦苇(Phragmites australis)和外来物种互花米草(Spartina alterniflora),研究了其在升温(约升高3℃)和淹水(浅淹水和深淹水)条件下的生长和光合特性.结果显示,升温处理增加了不淹水和浅淹水条件下的芦苇株高、叶面积、最大光合速率与表观量子效率,而对深淹水条件下的芦苇影响较小.深淹水处理下芦苇株高最高,但叶面积最小,体现了其形态适应性.深淹水处理显著降低了生长季中期与后期的芦苇光合和叶绿素荧光参数.升温和淹水处理均提高了互花米草的生长、光合和叶绿素荧光参数,且升温条件下的增加程度较芦苇高,各生长阶段不同淹水处理之间没有显著差异.方差分析表明,升温和淹水处理对芦苇生理生态参数的影响显著程度具有季节差异性,淹水处理的影响更为显著,并存在因子交互作用.升温处理对互花米草光合参数有显著影响,而淹水处理的影响不显著.因此,外来物种可能比土著物种更能适应未来气温升高和海平面上升的环境条件.
  • 图  1  2016室外(遮雨棚)和玻璃温室内日平均气温的季节变化

    注: 日期为2016年1——11月; 图中AT表示常温, ET表示升温

    Fig.  1  Seasonal changes in the daily mean air temperature outside and inside the glasshouses

    图  2  升温及淹水处理下芦苇(A, B, C, D)和互花米草(E, F, G, H)的株高和叶面积(± S.D.)的季节变化

    注: 图中Non-W表示不淹水, S-W表示浅淹水, D-W表示深淹水, AT表示常温, ET表示升温

    Fig.  2  Seasonal changes in shoot height and leaf area (± S.D.) of P. australis (A, B, C, D) and S. alterniflora (E, F, G, H) under elevated temperature and varying waterlogging treatments

    图  3  升温及淹水处理下芦苇(A, B)和互花米草(C, D)地上生物量(± S.D.)的季节变化

    不同小写字母代表差异性达到显著水平(p<0.05);图中Non-W表示不淹水, S-W表示浅淹水, D-W表示深淹水, AT表示常温, ET表示升温

    Fig.  3  Seasonal changes in above-ground biomass (± S.D.) of P. australis (A, B) and S. alterniflora (C, D) under elevated temperature and varying waterlogging treatments

    图  4  升温及淹水处理下芦苇(A, B, C, D)和互花米草(E, F, G, H)叶片的最大光合速率(Pmax)和表观量子效率(Qα)(± S.D.)的季节变化

    不同小写字母代表差异性达到显著水平(p<0.05);图中Non-W表示不淹水, S-W表示浅淹水, D-W表示深淹水, AT表示常温, ET表示升温

    Fig.  4  Seasonal changes in maximum rate of photosynthesis (Pmax) and apparent quantum yield (Qα) (± S.D.) of P. australis (A, B, C, D) and S. alterniflora (E, F, G, H) under elevated temperature and varying waterlogging treatments

    图  5  升温及淹水处理下芦苇(A, B, C)和互花米草(D, E, F)的最小叶绿素荧光(F0)、最大叶绿素荧光(Fm)和最大光化学效率(Fv/Fm)(± S.D.)的季节变化

    注: 不同小写字母代表差异性达到显著水平(p<0.05);图中Non-W表示不淹水, S-W表示浅淹水, D-W表示深淹水, AT表示常温, ET表示升温

    Fig.  5  Seasonal changes in minimum chlorophyll fluorescence (F0), maximal chlorophyll fluorescence (Fm), and maximum photochemical efficiency of photosystem Ⅱ (Fv/Fm) (± S.D.) of P. australis (A, B, C) and S. alterniflora (D, E, F) under elevated temperature and varying waterlogging treatments

    表  1  升温及淹水处理对芦苇生长和光合参数的影响及因子交互效应(数据为F值)

    Tab.  1  Main and interactive effects (F values) of elevated temperature and varying waterlogging treatments on the growth and photosynthetic parameters in P. australis over the growing period

    参数 因子 生长季早期(4月) 生长季中期(6月) 生长季后期(10月)
    Biomass 升温 / 1.91 1.57
    淹水 / 15.11** 17.34**
    升温×淹水 / 1.51 0.02
    Pmax 升温 16.75** 3.93 4.76
    淹水 1.06 6.67* 7.04*
    升温×淹水 3.83 1.19 13.10**
    Qα 升温 13.41** 2.42 1.65
    淹水 0.30 14.56** 10.56**
    升温×淹水 1.52 0.37 5.94*
    F0 升温 11.17* / 11.17
    淹水 2.85 / 38.52**
    升温×淹水 1.24 / 0.26
    Fm 升温 2.38 / 4.61
    淹水 9.82* / 4.19
    升温×淹水 0.76 / 0.04
    Fv/Fm 升温 1.40 / 4.20
    淹水 2.21 / 0.06
    升温×淹水 2.73 / 0.11
    注:显著性水平*表示p<0.05, **表示p<0.01
    下载: 导出CSV

    表  2  升温及淹水处理对互花米草生长和光合参数的影响及因子交互效应(数据为F值)

    Tab.  2  Main and interactive effects (F values) of elevated temperatures and varying waterlogging treatments on the growth and photosynthetic parameters in S. alterniflora over the growing period

    参数 因子 生长季早期(4月) 生长季中期(6月) 生长季后期(10月)
    Biomass 升温 / 5.74* 6.44*
    淹水 / 3.82 3.89
    升温×淹水 / 0.01 3.18
    Pmax 升温 38.11** 4.61 37.92**/
    淹水 0.14 3.55 0.82
    升温×淹水 0.15 0.82 3.02
    Qα 升温 5.77* 1.39 9.54*
    淹水 0.72 2.27 0.34
    升温×淹水 1.06 0.99 0.39
    F0 升温 1.46 / 4.09
    淹水 1.33 / 1.64
    升温×淹水 3.56 / 3.64
    Fm 升温 3.45 / 1.78
    淹水 1.05 / 3.18
    升温×淹水 1.85 / 3.21
    Fv/Fm 升温 4.00 / 1.33
    淹水 3.04 / 1.43
    升温×淹水 2.51 / 1.00
    注:显著性水平*表示p<0.05, **表示p<0.01
    下载: 导出CSV
  • [1] MILLENNIUM ECOSYSTEM ASSESSMENT. Ecosystems and Human Well-being:Wetlands and Water Synthesis[M]. Washington DC:World Resources Institute, 2005.
    [2] KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478):53-60. doi:  10.1038/nature12856
    [3] STOCKER T F, QIN D, PLATTNER G K, et al. The Physical Science Basis[R]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2013:159-254. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.6936
    [4] CHURCH J A, CLARK P U, CAZENAVE A, et al. Sea-level rise by 2100[J]. Science, 2013, 342(6165):1445. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3107304
    [5] ZUO P, ZHAO S, LIU C A, et al. Distribution of Spartina spp. along China's coast[J]. Ecological Engineering, 2012, 40:160-166. doi:  10.1016/j.ecoleng.2011.12.014
    [6] 关道明.中国滨海湿地[M].北京:海洋出版社, 2012.
    [7] GE Z M, ZHANG L Q, LIN Y. Spatiotemporal dynamics of salt marsh vegetation regulated by plant invasion and abiotic processes in the Yangtze Estuary:observations with a modeling approach[J]. Estuaries & Coasts, 2015, 38(1):310-324. doi:  10.1007/s12237-014-9804-7
    [8] LI B, LIAO C H, ZHANG X D, et al. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects[J]. Ecological Engineering, 2009, 35(4):511-520. https://www.sciencedirect.com/science/article/abs/pii/S0925857408001109
    [9] CLELAND E E, CHIARIELLO N R, LOARIE S R, et al. Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37):13740-13744. doi:  10.1073/pnas.0600815103
    [10] RUSTAD L E, CAMPBELL J L, MARION G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562. doi:  10.1007/s004420000544
    [11] 祁秋艳, 杨淑慧, 仲启铖, 等.崇明东滩芦苇光合特征对模拟增温的响应[J].华东师范大学学报(自然科学版), 2012, 2012(6):29-38. doi:  10.3969/j.issn.1000-5641.2012.06.004
    [12] MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level[J]. Ecology, 2002, 83(10):2869-2877. doi:  10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2
    [13] KOPPITZ H. Effects of flooding on the amino acid and carbohydrate patterns of Phragmites australis[J]. Limnologica, 2004, 34(1):37-47. https://www.sciencedirect.com/science/article/pii/S0075951104800203
    [14] MAUCHAMP A, METHY M. Submergence-induced damage of photosynthetic appá ratus in Phragmites australis[J]. Environmental & Experimental Botany, 2004, 51(3):227-235.
    [15] GLAZ B, MORRIS D R, DAROUB S H. Sugarcane photosynthesis, transpiration, and stomatal conductance due to flooding and water table[J]. Crop Science, 2004, 44(5):1633-1641. doi:  10.2135/cropsci2004.1633
    [16] 仲启铖, 王江涛, 周剑虹, 等.水位调控对崇明东滩围垦区滩涂湿地芦苇和白茅光合、形态及生长的影响[J].应用生态学报, 2014, 25(2):408-418. http://d.old.wanfangdata.com.cn/Periodical/yystxb201402015
    [17] 潘澜, 薛立.植物淹水胁迫的生理学机制研究进展[J].生态学杂志, 2012, 31(10):2662-2672. http://d.old.wanfangdata.com.cn/Periodical/stxzz201210035
    [18] 刘瑞仙, 靖元孝, 肖林, 等.淹水深度对互叶白千层幼苗气体交换、叶绿素荧光和生长的影响[J].生态学报, 2010, 30(19):5113-5120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000630170
    [19] CANNELL M G R, THORNLEY J H M. Temperature and CO2 responses of leaf and canopy photosynthesis:a clarification using the non-rectangular hyperbola model of photosynthesis[J]. Annals of Botany, 1998, 82(6):883-892. doi:  10.1006/anbo.1998.0777
    [20] EVANS J R, JAKOBSEN I, ÖGREN E. Photosynthetic light-response curves:2. Gradients of light absorption and photosynthetic capacity[J]. Planta, 1993, 189(2):191-200. doi:  10.1007-BF00195076/
    [21] MAXWELL K, JOHNSON G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668. doi:  10.1093/jexbot/51.345.659
    [22] ENGELS J G, KAI J. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient[J]. Oikos, 2010, 119(4):679-685. doi:  10.1111/j.1600-0706.2009.17940.x
    [23] DUNNE J A, HARTE J, TAYLOR K J. Subalpine meadow flowering phenology responses to climate change:integrating experimental and gradient methods[J]. Ecological Monographs, 2003, 73(1):69-86. doi:  10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
    [24] NIU S, LI Z, XIA J, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental & Experimental Botany, 2008, 63(1):91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dbae3afdb0ddda7fa99903b0e45bbe2
    [25] LOIK M E, REDAR S P, HARTE J. Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA[J]. Functional Ecology, 2000, 14(2):166-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be4d843179b03c5dc44afcbe8e902b3e
    [26] SANDVIK S M, HEEGAARD E, ELVEN R, et al. Responses of alpine snowbed vegetation to long-term experimental warming[J]. Ecoscience, 2004, 11(2):150-159. doi:  10.1080/11956860.2004.11682819
    [27] 王琼, 唐娅, 谢涛, 等.入侵植物喜旱莲子草和本地种接骨草光合生理特征对增温响应的差异[J].生态学报, 2017, 37(3):770-777. http://d.old.wanfangdata.com.cn/Periodical/stxb201703006
    [28] LIMA A L S, DAMATTA F M, PINHEIRO H A, et al. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions[J]. Environmental & Experimental Botany, 2002, 47(3):239-247. doi:  10.1016-S0098-8472(01)00130-7/
    [29] BRADLEY B A, BLUMENTHAL D M, WILCOVE D S, et al. Predicting plant invasions in an era of global change[J]. Trends in Ecology & Evolution, 2010, 25(5):310-318. doi:  10.1016-j.tree.2009.12.003/
    [30] SAGE R, KUBIEN D. The temperature responses of C3 and C4 photosynthesis[J]. Plant, Cell and Environment, 2007, 30:1086-1106. doi:  10.1111/pce.2007.30.issue-9
    [31] KIRSCHBAUM M U. Direct and indirect climate change effects on photosynthesis and transpiration[J]. Plant Biology, 2004, 6(3):242-253. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1c657f87df43e064203a333640314bb
    [32] GE Z M, WANG H, CAO H B, et al. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes[J]. Scientific Reports, 2016(6):28466. https://www.nature.com/articles/srep28466
    [33] AMSBERRY L, BAKER M A, EWANCHUK P J, et al. Clonal integration and the expansion of Phragmites australis[J]. Ecological Applications, 2000, 10(4):1110-1118. doi:  10.1890/1051-0761(2000)010[1110:CIATEO]2.0.CO;2
    [34] 刘泽彬, 程瑞梅, 肖文发, 等.淹水对三峡库区消落带香附子生长及光合特性的影响[J].生态学杂志, 2013, 32(8):2015-2022. http://d.old.wanfangdata.com.cn/Periodical/stxzz201308010
    [35] CHEN X, PIERIK R, PEETERS A J M, et al. Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation[J]. Plant Physiology, 2010, 154(2):969-977. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2949041
    [36] VOESENEK L A, RIJNDERS J H, PEETERS A J, et al. Plant hormones regulate fast shoot elongation under water:From genes to communities[J]. Ecology, 2004, 85(1):16-27. https://academic.oup.com/aobpla
    [37] MANZUR M E, GRIMOLDI A A, INSAUSTI P, et al. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence[J]. Annals of Botany, 2009, 104(6):1163-1169. doi:  10.1093/aob/mcp203
    [38] ASHRAF M, ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging[J]. Biologia Plantarum, 2005, 49(3):459-462. doi:  10.1007/s10535-005-0029-2
    [39] MIELKE, MATOS M S, COUTO E M, et al. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding[J]. Acta Botanica Brasilica, 2005, 19(4):264-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002621146
    [40] MALIK A I, COLMER T D, LAMBERS H, et al. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging[J]. Australian Journal of Plant Physiology, 2001, 28(11):1121-1131.
    [41] CHEN H, QUALLS R G, BLANK R R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium[J]. Aquatic Botany, 2005, 82(4):250-268. doi:  10.1016/j.aquabot.2005.02.013
    [42] VOSS C M, CHRISTIAN R R, MORRIS J T. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes[J]. Marine Biology, 2013, 160(1):181-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f4cb88e6b46fddcad09a2d185aa1b9d
    [43] NAIDOO G, MCKEE K L, MENDELSSOHN I A. Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae)[J]. American Journal of Botany, 1992, 79(7):765-770. doi:  10.1002/j.1537-2197.1992.tb13652.x
    [44] 孙宝玉, 韩广轩, 陈亮, 等.短期模拟增温对黄河三角洲滨海湿地芦苇光响应特征的影响[J].生态学报, 2018, 38(1):167-176. http://d.old.wanfangdata.com.cn/Periodical/stxb201801017
    [45] DWYER S A, GHANNOUM O, NICOTRA A, et al. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry[J]. Plant Cell & Environment, 2007, 30(1):53-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3aafec272e16ce59e021604336fea17a
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  51
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-29
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回