中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口滨海湿地植物群落潮沟水体有机碳动态及其影响因素

费蓓莉 解丽娜 李诗华 陈威 葛振鸣

费蓓莉, 解丽娜, 李诗华, 陈威, 葛振鸣. 长江口滨海湿地植物群落潮沟水体有机碳动态及其影响因素[J]. 华东师范大学学报(自然科学版), 2019, (1): 156-165. doi: 10.3969/j.issn.1000-5641.2019.01.017
引用本文: 费蓓莉, 解丽娜, 李诗华, 陈威, 葛振鸣. 长江口滨海湿地植物群落潮沟水体有机碳动态及其影响因素[J]. 华东师范大学学报(自然科学版), 2019, (1): 156-165. doi: 10.3969/j.issn.1000-5641.2019.01.017
FEI Bei-li, XIE Li-na, LI Shi-hua, CHEN Wei, GE Zhen-ming. Variations in organic carbon and its impact on tidal creeks within vegetation communities in the coastal wetlands of the Yangtze Estuary[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 156-165. doi: 10.3969/j.issn.1000-5641.2019.01.017
Citation: FEI Bei-li, XIE Li-na, LI Shi-hua, CHEN Wei, GE Zhen-ming. Variations in organic carbon and its impact on tidal creeks within vegetation communities in the coastal wetlands of the Yangtze Estuary[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 156-165. doi: 10.3969/j.issn.1000-5641.2019.01.017

长江口滨海湿地植物群落潮沟水体有机碳动态及其影响因素

doi: 10.3969/j.issn.1000-5641.2019.01.017
基金项目: 

国家自然科学基金 41871088

国家自然科学基金 41571083

国家重点研发计划 2016YFE0133700

国家重点研发计划 2017YFC0506001

国家重点实验室自主课题 2015KYYW03

详细信息
    作者简介:

    费蓓莉, 女, 硕士研究生, 研究方向为湿地生态学

    通讯作者:

    葛振鸣, 男, 研究员, 博士生导师, 研究方向为湿地生态学.E-mail:zmge@sklec.ecnu.edu.cn

  • 中图分类号: P933

Variations in organic carbon and its impact on tidal creeks within vegetation communities in the coastal wetlands of the Yangtze Estuary

  • 摘要: 潮沟系统是滨海湿地与外界环境之间横向碳交换的重要通道.本研究以长江口滨海湿地典型植物群落(禾本科Poaceae和莎草科Cyperaceae)为研究对象,调查了不同潮汐(小潮期与大潮期)退潮过程中潮沟水体可溶性有机碳(DOC)和颗粒态有机碳(POC)的季节变化.结果表明,潮水向外输出的过程中,DOC和POC从高潮滩到口外浅水光滩均逐渐变化,大潮期时不同生境潮沟的有机碳丰度一般比小潮期高.在具有较高植物生物量和土壤有机碳储量的Poaceae群落中,各季节潮沟水体DOC含量均显著高于Cyperaceae生境潮沟;相反,各季节Cyperaceae群落潮沟POC含量则高于Poaceae群落潮沟.此外,Poaceae群落潮沟在各季节均表现为DOC净输出,而POC为净输入,各季节DOC和POC在Cyperaceae群落潮沟均呈现净输出趋势.
  • 图  1  崇明东滩湿地和不同植被群落中的潮沟研究地点(包括采样点)

    Fig.  1  Location of the Chongming Dongtan wetland and the tidal creeks (with sampling sites) selected in different vegetation communities

    图  2  小、大潮期退潮时Poaceae群落潮沟沿高程(从PH到Pout)的DOC和POC含量变化量(平均值±标准误)

    注: A为春季, B为夏季, C为秋季, D为冬季

    Fig.  2  Variations in DOC and POC concentration (mean± S.E.) along the altitude (from PH to Pout) of creeks in the Poaceae community during a neap and spring ebb tide

    图  3  小、大潮期退潮时Cyperaceae群落潮沟沿高程(从CH到Cout)的DOC和POC含量变化量(平均值±标准误)

    注: A为春季, B为夏季, C为秋季, D为冬季

    Fig.  3  Variations in DOC and POC concentration (mean± S.E.) along the altitude (from PH to Pout) of creeks in the Cyperaceae community during a neap and spring ebb tide

    图  4  小、大潮期退潮时Poaceae和Cyperaceae群落潮沟DOC和POC含量差异(平均值± \\标准误)

    注: 数据为PH, PM和PL采样点的均值, 以及CH, CM和CL采样点的均值; 不同小写字母代表差异性达到显著水平(p<0.05

    Fig.  4  Differences in DOC and POC concentration (mean± S.E.)between vegetated creeksof the Poaceaeand Cyperaceae communities during a neap and spring ebb tide

    图  5  邻近潮沟的Poaceae和Cyperaceae群落植物生物量和土壤有机碳储量(平均值±标准误)

    注: 不同小写字母代表差异性达到显著水平(p<0.05)

    Fig.  5  Biomass and SOC stocks (mean± S.E.) in the Poaceae and Cyperaceae communities neighboring the creeks

    图  6  Poaceae和Cyperaceae群落植物总生物量季节变化与邻近潮沟DOC和POC含量的线性关系

    注: 数据(平均值±标准误)为PH, PM和PL采样点的均值,以及CH, CM, 和CL 采样点的均值; *表示显著水平p<0.05

    Fig.  6  Linear relationship between the seasonal total biomass of Poaceae and Cyperaceae species and DOC and POC concentration in the neighboring vegetated creeks

    表  1  潮沟水样采集时间、潮汐类型和当日最高潮位

    Tab.  1  Date of sampling from the creeks and information on the associated tide regime and maximum tide level

    季节 采样时间 潮汐类型 最高潮位/m
    春季 3月1日-2日 大潮 4.14
    3月19日-20日 小潮 3.23
    夏季 7月15日-16日 小潮 3.18
    8月22日-23日 大潮 4.65
    秋季 10月18日-19日 大潮 4.14
    10月25日-26日 小潮 2.67
    冬季 12月23日-24日 小潮 3.16
    12月30日-31日 大潮 4.00
    下载: 导出CSV
  • [1] MCLEOD E, CHMURA G L, BOUILLON S, et al. A blueprint for blue carbon:toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2[J]. Front Ecol Environ, 2011, 9(10):552-560. doi:  10.1890/110004
    [2] 高宇, 刘鉴毅, 张婷婷, 等.滨海河口湿地生态系统对全球气候变化的影响[J].环境与可持续发展, 2016(4):16-19., 2016(4):16-19. doi:  10.3969/j.issn.1673-288X.2016.04.005
    [3] FAGHERAZZI S, WIBERG P L, TEMMERMAN S, et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes[J]. Ecological Processes, 2013, 2(1):1-16. doi:  10.1186/2192-1709-2-3
    [4] CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochem Cy, 2003, 17(4):22. doi:  10.1029-2002GB001917/
    [5] DUARTE C M, MIDDELBURG J J, CARACO N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1):1-8. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_65a5725d5296226a8d86897466e3c881
    [6] MIDDELBURG J J, NIEUWENHUIZE J, LUBBERTS R K, et al. Organic carbon isotope systematics of coastal marshes[J]. Estuar Coast Shelf S, 1997, 45(5):681-687. doi:  10.1006/ecss.1997.0247
    [7] SHARITZ R R, PENNINGS S C. Development of wetland plant communities[M]//BATZER D. Ecology of Freshwater and Estuarine Wetlands. CA: University of California Press, 2006: 177-241.
    [8] BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J]. Nature, 2013, 504(7478):61-70. doi:  10.1038/nature12857
    [9] YAN Y, ZHAO B, CHEN J, et al. Closing the carbon budget of estuarine wetlands with tower-based measurements and MODIS time series[J]. Global Change Biol, 2008, 14(7):1690-1702. doi:  10.1111/j.1365-2486.2008.01589.x
    [10] 曹磊, 宋金明, 李学刚, 等.滨海盐沼湿地有机碳的沉积与埋藏研究进展[J].应用生态学报, 2013, 24(7):2040-2048., 2013, 24(7):2040-2048. http://d.old.wanfangdata.com.cn/Periodical/yystxb201307035
    [11] TAYLOR D I, ALLANSON B R. Organic carbon fluxes between a high marsh and estuary, and the inapplicability of the outwelling hypothesis[J]. Mar Ecol-Prog Ser, 1995, 120(1/2/3):263-270.
    [12] ALONGI D M. Coastal Ecosystem Processes[M]. OH:CRC Press, 1998.
    [13] OSBURN C L, MIKAN M P, ETHERIDGE J R, et al. Seasonal variation in the quality of dissolved and particulate organic matter exchanged between a salt marsh and its adjacent estuary[J]. J Geophys Res-Biogeo, 2015, 120(7):1430-1449. doi:  10.1002/2014JG002897
    [14] ODUM E P. Tidal marshes as outwelling/pulsing systems[M]//WEINSTEIN M P, KREEGER D A. Concepts and Controversies in Tidal Marsh Ecology. New York: Kluwer Academic Publishers, 2002: 3-7.
    [15] 关道明.中国滨海湿地[M].北京:海洋出版社, 2012.
    [16] 周云轩, 谢一民.上海市湿地资源调查与监测评估体系研究[M].上海:上海科学技术出版社, 2012.
    [17] GUO H, NOORMETS A, ZHAO B, et al. Tidal effects on net ecosystem exchange of carbon in an estuarine wetland[J]. Agr Forest Meteorol, 2009, 149(11):1820-1828. doi:  10.1016/j.agrformet.2009.06.010
    [18] ZHANG T, CHEN H, CAO H, et al. Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary[J]. Chin J Oceanol Limnol, 2017, 35(4):833-843. doi:  10.1007/s00343-017-6054-0
    [19] TZORTZIOU M, NEALE P J, MEGONIGAL J P, et al. Spatial gradients in dissolved carbon due to tidal marsh outwelling into a Chesapeake Bay estuary[J]. Mar Ecol-Prog Ser, 2011, 426:41-56. doi:  10.3354/meps09017
    [20] HOWES B L, GOEHRINGER D D. Porewater drainage and dissolved organic carbon and nutrient losses through the intertidal creekbanks of a New England salt marsh[J]. Marine Ecology Progress Series, 1994:289-301. doi:  10.3354-meps114289/
    [21] QUALLS R G, RICHARDSON C J. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida[J]. Biogeochemistry, 2003, 62(2):197-229. doi:  10.1023-A-1021150503664/
    [22] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils:A review[J]. Soil Sci, 2000, 165(4):277-304. doi:  10.1097-00010694-200004000-00001/
    [23] MORAN M A, SHELDON W M, SHELDON J E. Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States[J]. Estuar Coast, 1999, 22(1):55-64. doi:  10.2307-1352927/
    [24] DAVIS S E, CHILDERS D L, NOE G B. The contribution of leaching to the rapid release of nutrients and carbon in the early decay of wetland vegetation[J]. Hydrobiologia, 2006, 569(1):87-97. doi:  10.1007/s10750-006-0124-1
    [25] VILLA J A, MITSCH W J, SONG K, et al. Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades[J]. Ecol Eng, 2014, 71:118-125. doi:  10.1016/j.ecoleng.2014.07.011
    [26] MUDD S M, HOWELL S M, MORRIS J T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation[J]. Estuar Coast Shelf S, 2009, 82(3):377-389. doi:  10.1016/j.ecss.2009.01.028
    [27] ABRIL G, NOGUEIRA M, ETCHEBER H, et al. Behaviour of organic carbon in nine contrasting European estuaries[J]. Estuar Coast Shelf S, 2002, 54(2):241-262. doi:  10.1006/ecss.2001.0844
    [28] BOUILLON S, MIDDELBURG J J, DEHAIRS F, et al. Importance of intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania)[J]. Biogeosciences, 2007, 4(1):317-348. http://www.oalib.com/paper/1374181#.XEmQDfm-A3k
    [29] LI H, YANG S L. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta[J]. J Coastal Res, 2009, 25(4):915-924. https://www.jstor.org/stable/27698386
    [30] GE Z M, WANG H, CAO H B, et al. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes[J/OL]. Sci Rep, 2016, 6.[2017-10-30]. https://www.researchgate.net/publication/304375047.DOI: 10.1038/srep28466.
    [31] DEEGAN L A, JOHNSON D S, WARREN R S, et al. Coastal eutrophication as a driver of salt marsh loss[J]. Nature, 2012, 490(7420):388-392. doi:  10.1038/nature11533
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  22
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-30
  • 刊出日期:  2019-01-25

目录

    /

    返回文章
    返回