中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有机-无机杂化钙钛矿(C4H9NH3)2PbBr4的第一原理计算研究

谢伟佳 王倩倩 谢文辉

谢伟佳, 王倩倩, 谢文辉. 有机-无机杂化钙钛矿(C4H9NH3)2PbBr4的第一原理计算研究[J]. 华东师范大学学报(自然科学版), 2019, (2): 122-127. doi: 10.3969/j.issn.1000-5641.2019.02.013
引用本文: 谢伟佳, 王倩倩, 谢文辉. 有机-无机杂化钙钛矿(C4H9NH3)2PbBr4的第一原理计算研究[J]. 华东师范大学学报(自然科学版), 2019, (2): 122-127. doi: 10.3969/j.issn.1000-5641.2019.02.013
XIE Wei-jia, WANG Qian-qian, XIE Wen-hui. A first principle investigation of organic-inorganic hybrid peroviskite (C4H9NH3)2PbBr4[J]. Journal of East China Normal University (Natural Sciences), 2019, (2): 122-127. doi: 10.3969/j.issn.1000-5641.2019.02.013
Citation: XIE Wei-jia, WANG Qian-qian, XIE Wen-hui. A first principle investigation of organic-inorganic hybrid peroviskite (C4H9NH3)2PbBr4[J]. Journal of East China Normal University (Natural Sciences), 2019, (2): 122-127. doi: 10.3969/j.issn.1000-5641.2019.02.013

有机-无机杂化钙钛矿(C4H9NH3)2PbBr4的第一原理计算研究

doi: 10.3969/j.issn.1000-5641.2019.02.013
详细信息
    作者简介:

    谢伟佳, 男, 硕士研究生, 研究方向为新能源材料和器件.E-mail:1149585042@qq.com

    通讯作者:

    谢文辉, 男, 副教授, 硕士生导师, 研究方向为凝聚态物理和材料物理.E-mail:whxie@phy.ecnu.edu.cn

  • 中图分类号: O482.7

A first principle investigation of organic-inorganic hybrid peroviskite (C4H9NH3)2PbBr4

  • 摘要: 采用基于密度泛函理论的第一原理计算方法研究了二维(C4H9NH32PbBr4单层结构的晶体结构和电子结构特性;通过进一步分析其化学成键和轨道特性,研究了光吸收性质.此外,还研究了外加垂直电场对其电子结构的影响,结果表明这种材料存在明显的电场驱动能隙调制效应,半导体能隙在外电场大于0.45 V/Å时关闭.
  • 图  1  晶体结构示意图(左边:顶视图; 右边:侧视图)

    Fig.  1  Illustration of the crystal structure (left: top view; right: side view)

    图  2  能带结构在外电场作用下的变化

    Fig.  2  Band structure as a function of the applied field

  • [1] XING G C, MATHEWS N, SUN S Y, et al. Long-range balanced electron-and hole-transport lengths in organicinorganic CH3NH3PbI3[J]. Science, 2013, 342(6156):344-347. doi:  10.1126/science.1243167
    [2] WANG J Z, HUANG Q L, XU X, et al. Realizing high photovoltaic efficiency with parallel multijunction solar cells based on spectrum-splitting and -concentrating diffractive optical element[J]. Chinese Physics B, 2015, 24(5):329-334. http://www.cqvip.com/QK/85823A/201505/664524803.html
    [3] DONG Q F, FANG Y J, SHAO Y C, et al. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225):967-970. doi:  10.1126/science.aaa5760
    [4] DEHAVEN P W, MEDEIROS D R, MITZI D B. Low temperature melt-processing of organic-inorganic hybrid: US, US 7105360 B2[P]. 2006.
    [5] PAPAVASSILIOU G C. Three-and low-dimensional inorganic semiconductors[J]. Progress in Solid State Chemistry, 1997, 25(3):125-270. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225720006/
    [6] MITZI D B. Templating and structural engineering in organic-inorganic perovskites[J]. Journal of the Chemical Society, Dalton Transactions, 2000(1):1-12. doi:  10.1039/a908459b
    [7] LANTY G, JEMLI K, WEI Y, et al. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudobinary alloys[J]. Journal of Physical Chemistry Letters, 2014, 5(22):3958-3563. doi:  10.1021/jz502086e
    [8] BORRIELLO I. Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides[J]. Physical Review B, 2008, 77(23), 52141-52149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ccaf03c3f7aaa6b1b0fe41b02bef2ac
    [9] MERESSE A, DAOUD A. Bis(n-propylammonium) tetrachloroplumbate[J]. Acta Crystallographica, 2010, 45(2):194-196. doi:  10.1107/S0108270188003634/citedby
    [10] ISHIHARA T, TAKAHASHI J, GOTO T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4[J]. Solid State Communications, 1989, 69(9):933-936. doi:  10.1016/0038-1098(89)90935-6
    [11] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene.[J]. Nature, 2005, 438(7065):197-200. doi:  10.1038/nature04233
    [12] RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3):147-150. doi:  10.1038/nnano.2010.279
    [13] LI L, YU Y, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5):372-377. doi:  10.1038/nnano.2014.35
    [14] RYCERZ A, TWORZYDLO J, BEENAKKER C W J. Valley filter and valley valve in graphene[J]. Nature Physics, 2006(3):172-175. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0608533
    [15] LU H Z, YAO W, XIAO D, et al. Intervalley scattering and localization behaviors of spin-valley coupled dirac fermions[J]. Physical Review Letters, 2013, 110(1):016806-016814. doi:  10.1103/PhysRevLett.110.016806
    [16] SCHAIBLEY J R, YU H, CLARK G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016(1):1-15. http://www.nature.com/articles/natrevmats201655
    [17] KRESSE G, FÜRTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set[J]. Physical Review B, 1996, 54(16):11169-11186. doi:  10.1103/PhysRevB.54.11169
    [18] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3868. doi:  10.1103/PhysRevLett.77.3865
    [19] BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24):17953-17979. doi:  10.1103/PhysRevB.50.17953
  • 加载中
图(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  252
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 刊出日期:  2019-03-25

目录

    /

    返回文章
    返回