中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅酸盐浓度对羽纹纲藻类圆弧运动的影响——以舟形藻为例

王峰 赵丽侠 朱政 胡文思 刘权兴

王峰, 赵丽侠, 朱政, 胡文思, 刘权兴. 硅酸盐浓度对羽纹纲藻类圆弧运动的影响——以舟形藻为例[J]. 华东师范大学学报(自然科学版), 2019, (2): 135-146. doi: 10.3969/j.issn.1000-5641.2019.02.015
引用本文: 王峰, 赵丽侠, 朱政, 胡文思, 刘权兴. 硅酸盐浓度对羽纹纲藻类圆弧运动的影响——以舟形藻为例[J]. 华东师范大学学报(自然科学版), 2019, (2): 135-146. doi: 10.3969/j.issn.1000-5641.2019.02.015
WANG Feng, ZHAO Li-xia, ZHU Zheng, HU Wen-si, LIU Quan-xing. The effect of dissolved silicic acid on circular motion behaviors in pennatae: A case study on diatom Navicula arenaria var. rostellata[J]. Journal of East China Normal University (Natural Sciences), 2019, (2): 135-146. doi: 10.3969/j.issn.1000-5641.2019.02.015
Citation: WANG Feng, ZHAO Li-xia, ZHU Zheng, HU Wen-si, LIU Quan-xing. The effect of dissolved silicic acid on circular motion behaviors in pennatae: A case study on diatom Navicula arenaria var. rostellata[J]. Journal of East China Normal University (Natural Sciences), 2019, (2): 135-146. doi: 10.3969/j.issn.1000-5641.2019.02.015

硅酸盐浓度对羽纹纲藻类圆弧运动的影响——以舟形藻为例

doi: 10.3969/j.issn.1000-5641.2019.02.015
基金项目: 

国家重点研发计划 2016YFE0103200

详细信息
    作者简介:

    王峰, 男, 硕士研究生, 研究方向为海洋生态学.E-mail:fwangecnu@163.com

    通讯作者:

    刘权兴, 男, 教授, 博士生导师, 研究方向为理论生态学.E-mail:qxliu@sklec.ecnu.edu.cn

  • 中图分类号: Q178

The effect of dissolved silicic acid on circular motion behaviors in pennatae: A case study on diatom Navicula arenaria var. rostellata

  • 摘要: 以舟形藻为研究对象,以f/2+Si培养基中硅酸盐浓度30mg/L为基准,设置不同硅酸盐浓度梯度(1、15、30、60、120和240 mg/L),通过显微跟踪技术获取舟形藻个体细胞的运动轨迹并研究硅酸盐浓度梯度对舟形藻运动行为的影响.发现如下结果.①舟形藻的主要运动方式为大量非恒速圆弧运动伴随着少量的随机倒退行为,圆弧运动过程曲率基本维持不变;倒退时刻运动方向和速度发生显著变化,此时夹角小于90°,倒退前后运动速度降低.②舟形藻在短时间尺度下呈现弹道行为;在中时间尺度下呈现超扩散行为;在长时间尺度下呈现布朗运动扩散行为.③舟形藻的运动行为显著依赖硅酸盐浓度,微量硅酸盐浓度(1mg/L,Na2SiO3)和高硅酸盐浓度(120 mg/L,Na2SiO3;240 mg/L,Na2SiO3)环境下会抑制舟形藻运动,低硅酸盐浓度(15mg/L,Na2SiO3)和中硅酸盐浓度(30 mg/L,Na2SiO3;60 mg/L,Na2SiO3)下会增强舟形藻的扩散系数.硅酸盐浓度对硅藻个体运动行为的研究帮助理解硅藻的觅食策略和聚集行为,为进一步理解硅藻水华的发生、海洋生物污损现象和海雪现象的爆发提供思路.
  • 图  1  不同硅酸盐浓度下舟形藻典型运动轨迹

    注: 五角星表示每条轨迹起点, 圆形表示每条轨迹终点, 每一条轨迹至少在视野内运动5 min以上

    图  2  (a) 30 mg/L硅酸盐浓度下一条典型轨迹舟形藻运动300 s的轨迹图; (b)舟形藻的运动速度随时间变化图; (c)舟形藻低速时刻角度速度分布图; (d)舟形藻的角度随时间变化图

    Fig.  2  (a) A representative trajectory of Navicula arenaria var. rostellata under Na2SiO3 30 mg/L over 5 minutes; (b) Velocity distribution and angle distribution at low speed; (c) Speed variation diagram

    图  3  不同硅酸盐浓度下舟形藻的均方差位移(a)及夹角分布(b)

    Fig.  3  Navicula arenaria var. rostellata distribution of the MSD (a) and motion angle (b) under different concentrations of Na2SiO3

    图  4  不同硅酸盐浓度下舟形藻的速度(a)、倒退百分比(b)、圆弧半径(c)、圆弧运动时间(d)、实际扩散速率(e)、理论扩散速率(f)的平均值

    Fig.  4  Navicula arenaria var. rostellata average value of the speed (a), reversal point percentage (b), circular radius (c), circular time (d), experiment diffusion coefficient (e), and theoretical diffusion coefficient (f) under different concentrations of Na2SiO3

    表  1  不同硅酸盐浓度下舟形藻运动信息

    Tab.  1  Motion information of Navicula arenaria var. Rostellata under different concentration of Na2SiO3

    硅浓度梯度/mg·L-1 轨迹条数/条 轨迹点数 扩散速率相差倍率
    1 22 21 945 7.13
    15 20 23 645 7.36
    30 48 42 467 5.78
    60 18 16 946 3.87
    120 15 14 766 1.71
    240 22 22 281 1.33
    注: 扩散速率相差倍率=(理论扩散速率/实际扩散速率)
    下载: 导出CSV
  • [1] SUMPER M, BRUNNER E. Learning from diatoms:Nature's tools for the production of nanostructured silica[J]. Advanced Functional Materials, 2010, 16(1):17-26. doi:  10.1002/adfm.200500616/abstract?globalMessage=0
    [2] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere:Integrating terrestrial and oceanic components[J]. Science, 1998, 281(5374):237. doi:  10.1126/science.281.5374.237
    [3] SMETACEK V. Diatoms and the ocean carbon cycle[J]. Protist, 1999, 150(1):25-32. doi:  10.1016/S1434-4610(99)70006-4
    [4] YEBRA D M, KⅡL S, DAM-JOHANSEN K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2):75-104. doi:  10.1016/j.porgcoat.2003.06.001
    [5] GAISER E E. The diatoms:Applications for the environmental and earth sciences[J]. Journal of Soils & Sediments, 2011, 30(7/8):103-104. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_fee35801864556ab7aa37c331db2df91
    [6] JIANG H, ZHENG Y, RAN L, et al. Diatoms from the surface sediments of the South China Sea and their relationships to modern hydrography[J]. Marine Micropaleontology, 2004, 53(3/4):279-292. doi:  10.1016-j.marmicro.2004.06.005/
    [7] JIANG H, BJÖRCK S, RAN L, et al. Impact of the Kuroshio Current on the South China Sea based on a 115?000 year diatom record[J]. Journal of Quaternary Science, 2010, 21(4):377-385. doi:  10.1002/jqs.1000/pdf
    [8] NASSIF N, LIVAGE J. From diatoms to silica-based biohybrids[J]. Chemical Society Reviews, 2011, 40(2):849-59. doi:  10.1039/C0CS00122H
    [9] FAN T X, CHOW S K, ZHANG D. Biomorphic mineralization:From biology to materials[J]. Progress in Materials Science, 2009, 54(5):542-659. doi:  10.1016/j.pmatsci.2009.02.001
    [10] GRACHEV M A, ANNENKOV V V, LIKHOSHWAY Y V. Silicon nanotechnologies of pigmented heterokonts[J]. Bioessays News & Reviews in Molecular Cellular & Developmental Biology, 2008, 30(4):328-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5340d2a4370b82e212eb43cd48c57454
    [11] FUHRMANN. Hammerzeh tut weh-diese und andere Zehendeformitäten[J]. Therapeutische Umschau, 2004, 61(7):417-420. doi:  10.1024/0040-5930.61.7.417
    [12] SEUNG WON JUNG, OH YOUN KWON, JIN HWAN LEE, et al. Effects of water temperature and silicate on the winter blooming diatom Stephanodiscus hantzschii (Bacillariophyceae) growing in eutrophic conditions in the lower Han River, South Korea[J]. Journal of Freshwater Ecology, 2009, 24(2):219-226. doi:  10.1080/02705060.2009.9664286
    [13] MARTIN JÉZÉQUEL V, HILDEBRAND M, BRZEZINSKI M A. Silicon metabolism in diatoms:Implications for growth[J]. Journal of Phycology, 2010, 36(5):821-840. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_540614
    [14] LEWIN J. Silicon metabolism in diatoms:5. Germanium dioxide, a specific inhibitor of diatom growth[J]. Phycologia, 1966, 6(1):1-12. doi:  10.2216/i0031-8884-6-1-1.1
    [15] EGGE J K, AKSNES D L. Silicate as regulating nutrient in phytoplankton competition[J]. Marine Ecology Progress, 1992, 83(2/3):281-289. doi:  10.3354-meps083281/
    [16] 杨利敏.舟形藻对造纸废水中COD去除效率及其影响因素的研究[D].武汉: 华中师范大学, 2011.
    [17] 李国忱, 刘录三, 汪星, 等.硅藻在河流健康评价中的应用研究进展[J].应用生态学报, 2012, 23(9):2617-2624. http://d.old.wanfangdata.com.cn/Periodical/yystxb201209041
    [18] MOLINO P J, WETHERBEE R. The biology of biofouling diatoms and their role in the development of microbial slimes[J]. Biofouling, 2008, 24(5):365-379. doi:  10.1080/08927010802254583
    [19] WANG J, CAO S, DU C, et al. Underwater locomotion strategy by a benthic pennate diatom Navicula sp.[J]. Protoplasma, 2013, 250(5):1203-1212. doi:  10.1007/s00709-013-0502-2
    [20] DE BROUWER J F C, WOLFSTEIN K, STAL L J. Physical characterization and diel dynamics of different fractions of extracellular polysaccharides in an axenic culture of a benthic diatom[J]. European Journal of Phycology, 2002, 37(1):37-44. doi:  10.1017/S0967026201003419
    [21] CALLOW J A, CALLOW M E. Trends in the development of environmentally friendly fouling-resistant marine coatings[J]. Nature Communications, 2011, 2(1):244. doi:  10.1038/ncomms1251
    [22] 陈琪.海洋底栖硅藻胞外多聚物的分泌和粘附行为的研究[D].上海: 上海海洋大学, 2016.
    [23] 赵守涣.丹皮酚和四种微结构硅胶材料对小舟形藻的抑制作用研究[D].上海: 上海海洋大学, 2015.
    [24] 杨强, 谢平, 徐军, 等.河流型硅藻水华研究进展[J].长江流域资源与环境, 2011(s1):159-165. http://www.cnki.com.cn/Article/CJFDTOTAL-CJLY2011S1027.htm
    [25] 郑丙辉, 曹承进, 张佳磊, 等.三峡水库支流大宁河水华特征研究[J].环境科学, 2009, 30(11):3218-3226. doi:  10.3321/j.issn:0250-3301.2009.11.016
    [26] 马美荣, 李朋富, 陈丽, 等.盐度和营养限制对盐田底栖硅藻披针舟形藻生长及胞外多糖产率的影响[J].海洋湖沼通报, 2009(1):95-102. doi:  10.3969/j.issn.1003-6482.2009.01.015
    [27] 郑维发, 王雪梅, 王义琴, 等.四种营养盐对舟形藻(Navicula)BT001生长速率的影响[J].海洋与湖沼, 2007, 38(2):157-162. doi:  10.3321/j.issn:0029-814X.2007.02.011
    [28] 刘菲菲, 冯慕华, 尚丽霞, 等.温度对铜绿微囊藻(Microcystis aeruginosa)和鱼腥藻(Anabaena sp.)生长及胞外有机物产生的影响[J].湖泊科学, 2014, 26(5):780-788. http://d.old.wanfangdata.com.cn/Periodical/hpkx201405017
    [29] 曲青梅.舟形藻悬浮培养条件优化及营养成分分析[D].山东烟台: 鲁东大学, 2015.
    [30] BONDOC K G V, HEUSCHELE J, GILLARD J, et al. Selective silicate-directed motility in diatoms[J]. Nature Communications, 2016(7):10540. http://europepmc.org/articles/PMC4742965/
    [31] GUTIÉRREZ-MEDINA B, GUERRA A J, MALDONADO A I, et al. Circular random motion in diatom gliding under isotropic conditions[J]. Physical Biology, 2014, 11(6):066006. doi:  10.1088/1478-3975/11/6/066006
    [32] STOCKER R. Reverse and flick:Hybrid locomotion in bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(7):2635-2636. doi:  10.1073/pnas.1019199108
    [33] XIE L, ALTINDAL T, CHATTOPADHYAY S, et al. From the cover:Bacterial flagellum as a propeller and as a rudder for efficient chemotaxis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(6):2246. doi:  10.1073/pnas.1011953108
    [34] JACKSON G A, KIØRBOE T. Zooplankton use of chemodetection to find and eat particles[J]. Marine Ecology Progress, 2004, 269(1):153-162. http://plankt.oxfordjournals.org/external-ref?access_num=10.3354/meps269153&link_type=DOI
    [35] TITELMAN J, KIØRBOE T. Predator avoidance by nauplii[J]. Marine Ecology Progress, 2003, 247(1):137-149. http://adsabs.harvard.edu/abs/2003MEPS..247..137T
    [36] HOWSE J R, JONES R A L, RYAN A J, et al. Self-motile colloidal particles:From directed propulsion to random walk[J]. Physical Review Letters, 2007, 99(4):048102. doi:  10.1103/PhysRevLett.99.048102
    [37] TAKAGI D, BRAUNSCHWEIG A B, ZHANG J, et al. Dispersion of self-propelled rods undergoing fluctuationdriven flips[J]. Physical Review Letters, 2013, 110(3):038301. doi:  10.1103/PhysRevLett.110.038301
    [38] VISWANATHAN G M, AFANASYEV V, BULDYREV S V, et al. Lévy flight search patterns of wandering albatrosses[J]. Nature, 1996, 381(6581):413-415. doi:  10.1038/381413a0
    [39] VISWANATHAN G M, RAPOSO E P, LUZ M G E D. Lévy flights and superdiffusion in the context of biological encounters and random searches[J]. Physics of Life Reviews, 2008, 5(3):133-150. doi:  10.1016/j.plrev.2008.03.002
    [40] UNDERWOOD G J C, BOULCOTT M, RAINES C A, et al. Environmental effects on exopolymer production by marine benthic diatoms:dynamics, changes in composition, and pathways of production[J]. Journal of Phycology, 2010, 40(2):293-304. doi:  10.1111-j.1529-8817.2004.03076.x/
  • 加载中
图(4) / 表(1)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  90
  • PDF下载量:  140
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-08
  • 刊出日期:  2019-03-25

目录

    /

    返回文章
    返回