中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

pH诱导调节聚联苯胺亚微米棒的形态与性能

王琳 张艳慧 阿孜古丽·木尔赛力木 阿比旦·阿布都乃则尔 兰海蝶

王琳, 张艳慧, 阿孜古丽·木尔赛力木, 阿比旦·阿布都乃则尔, 兰海蝶. pH诱导调节聚联苯胺亚微米棒的形态与性能[J]. 华东师范大学学报(自然科学版), 2019, (2): 164-173. doi: 10.3969/j.issn.1000-5641.2019.02.018
引用本文: 王琳, 张艳慧, 阿孜古丽·木尔赛力木, 阿比旦·阿布都乃则尔, 兰海蝶. pH诱导调节聚联苯胺亚微米棒的形态与性能[J]. 华东师范大学学报(自然科学版), 2019, (2): 164-173. doi: 10.3969/j.issn.1000-5641.2019.02.018
WANG Lin, ZHANG Yan-hui, Arzugul MUSLIM, Abida ABDUNAZAR, LAN Hai-die. pH induced regulation of the morphology and properties of polybenzidine submicron rods[J]. Journal of East China Normal University (Natural Sciences), 2019, (2): 164-173. doi: 10.3969/j.issn.1000-5641.2019.02.018
Citation: WANG Lin, ZHANG Yan-hui, Arzugul MUSLIM, Abida ABDUNAZAR, LAN Hai-die. pH induced regulation of the morphology and properties of polybenzidine submicron rods[J]. Journal of East China Normal University (Natural Sciences), 2019, (2): 164-173. doi: 10.3969/j.issn.1000-5641.2019.02.018

pH诱导调节聚联苯胺亚微米棒的形态与性能

doi: 10.3969/j.issn.1000-5641.2019.02.018
基金项目: 

国家自然科学基金 51763023

新疆师范大学校级科研平台招标课题 XJNUGCZX122017A03

详细信息
    作者简介:

    王琳, 女, 硕士研究生, 研究方向为高分子材料.E-mail:wang_lin17@sina.com

    通讯作者:

    阿孜古丽·木尔赛力木, 女, 副教授, 硕士生导师, 研究方向为电活性高分子材料.E-mail:arzu_hma@sina.com

  • 中图分类号: O631.1

pH induced regulation of the morphology and properties of polybenzidine submicron rods

  • 摘要: 以三嵌段共聚物聚丙烯酸正丁酯-b-聚苯乙烯-b-聚二乙烯基吡啶(PnBA28-b-PS75-b-P2VP104)为模板剂制备聚联苯胺,通过调节模板剂胶束溶液的pH值,探究不同pH值对聚联苯胺(PBZ)颗粒形貌及其性能的影响.利用凝胶渗透色谱(SEC)和核磁共振氢谱图(1H-NMR)等测试对三嵌段共聚物PnBA28-b-PS75-b-P2VP104的分子量分布、结构进行了确定.通过扫描微镜(SEM)、透射电镜(TEM)和红外光谱(FT-IR)等测试对材料的形貌、结构进行了表征.利用计时电位测试对材料进行了电化学电容性能的评价.初步探讨了使用不同pH值的模板剂、相同引发剂用量对PBZ形貌、结构和性能的影响.PBZ颗粒呈亚微米级至微米级棒状形貌,分布均匀、表面光滑.pH值为5时,PBZ棒状颗粒的直径大多在几十纳米到200nm之间,随着pH值的增大,样品形貌规整性降低;通过电化学测试可知,pH值为5时PBZ的放电比容量达到339.06 F/g.
  • 图  1  DMF中嵌段共聚物的SEC曲线

    Fig.  1  SEC curves of block copolymers in DMF

    图  2  嵌段共聚物的1H-NMR谱

    Fig.  2  1H-NMR spectrum of block copolymers

    图  3  不同pH值下PBZ与模板复合颗粒的红外光谱图

    注: (a) pH=5; (b) pH=6; (c) pH=7; (d) pH=8

    Fig.  3  FT-IR spectra of composite particles of polybenzidine with a template at different pH values

    图  4  不同pH值下去模板后的PBZ的红外光谱图

    注: (a) pH=5; (b) pH=6; (c) pH=7; (d) pH=8

    Fig.  4  FT-IR spectra of polybenzidine after removing the template at different pH values

    图  5  不同pH值下去模板后的PBZ扫描电镜图

    注: (a) pH=5; (b) pH=6; (c) pH=7; (d) pH=8

    Fig.  5  SEM images of PBZ after removing the template

    图  6  不同pH值下去模板后的PBZ透射电镜图

    注: (a) pH=5; (b) pH=6; (c) pH=7; (d) pH=8

    Fig.  6  TEM images of PBZ after removing the template

    图  7  不同pH值下PBZ去除模板后的计时电位

    Fig.  7  Timing potential of PBZ at different pH values after removing the template

    表  1  不同pH值的放电比容量

    Tab.  1  Discharge capacity at different pH values

    pH值 比容量/(F· g-1)
    5 339.06
    6 297.11
    7 162.67
    8 258.45
    下载: 导出CSV
  • [1] DUONG N, HYEONSEOK Y. Recent advances in nanostructured conducting Polymers:from synthesis to practical applications[J]. Polymers, 2016, 8(4):118-156. doi:  10.3390/polym8040118
    [2] 于波, 徐学诚.聚吡咯结构与导电性能的研究[J].华东师范大学学报(自然科学版), 2014, 4:77-87. http://xblk.ecnu.edu.cn/CN/abstract/abstract24992.shtml
    [3] ERDEN F, LAI S C, CHI H, et al. Tailoring the Diameters of Polyaniline Nanofibers for Sensor Application[J]. ACS Omega, 2017, 2:6506-6513. doi:  10.1021/acsomega.7b00544
    [4] SCHERR E M, MACDIARMID A G, Manohar S K, et al. Polyaniline:Oriented films and fibers[J]. Synthetic Metals, 1991, 41(1):735-738. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231900346/
    [5] WEI Y, HSUEH K F, JANG G W. A Study of leucoemeraldine and effect of redox reactions on molecular weight of chemically prepared polyaniline[J]. Macromolecules, 1994, 27(2):518-525. doi:  10.1021/ma00080a028
    [6] JANATA J, JOSOWICZ M. Conducting polymers in electronic chemical sensors[J]. Nature Materials, 2003, 2(1):19-24. http://cn.bing.com/academic/profile?id=4d76498b326b5244b2cf67cda192cd02&encoded=0&v=paper_preview&mkt=zh-cn
    [7] TSENG R J, HUANG J, OUYANG J, et al. Polyaniline nanofiber/gold nanoparticle nonvolatile memory[J]. Nano Letters, 2005, 5(6):1077-1080. doi:  10.1021/nl050587l
    [8] BHIM B P, INDU P, AMRITA S, et al. Multiwalled carbon nanotubes-based pencil graphite electrode modified with an electrosynthesized molecularly imprinted nanofilm for electrochemical sensing of methionine enantiomers[J]. Sensors and Actuators B, 2013, 176:863-874. doi:  10.1016/j.snb.2012.09.050
    [9] YOON H, JANG J. Conducting-polymer nanomaterials for high-performance sensor applications:Issues and challenges[J]. Advanced Functional Materials, 2009, 19(10):1567-1576. doi:  10.1002/adfm.v19:10
    [10] LI X D, HUANG M R, DUAN W, et al. Novel multifunctional polymers from aromatia diamines by oxidative poly-merizations[J]. Chemical Review, 2002, 102(9):2925-3030. doi:  10.1021/cr010423z
    [11] WANG Y G, LI H Q, XIA Y Y. Ordered whisker like polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance[J]. Advanced Materials, 2006, 18(19):2619-2623. doi:  10.1002/(ISSN)1521-4095
    [12] SREEDHAR B, RADHIKA P, NEELIMA B. et al. Synthesis and characterization of polyaniline:nanospheres, nanorods and nanotubes-catalytic application for sulfoxidation reactions[J]. Polymers for Advanced Technologies, 2009, 20(12):950-958. doi:  10.1002/pat.1344
    [13] PENNER R M. Controlling the morphology of electronically conductive polymers[J]. Journal of the Electrochemical Society, 1986, 33(10):2206-2207. http://cn.bing.com/academic/profile?id=1edeaf5b40384c7a8fdcdcace14a432e&encoded=0&v=paper_preview&mkt=zh-cn
    [14] LIANG L, LIU J, WINDISCH JR C F, et al. Direct assembly of large arrays of oriented conducting polymer nanowires.[J]. Angewandte Chemie International Edition, 2002, 41(19):3817-3820. http://cn.bing.com/academic/profile?id=ba74798d1a76aa59ddd11a57219f2d11&encoded=0&v=paper_preview&mkt=zh-cn
    [15] LEE J I, CHO S H, PARK S M, et al. Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates[J]. Nano Letters, 2008, 8(8):2315-2320. doi:  10.1021/nl801105s
    [16] WANG M, KUMAR S, LEE A, et al. Nanoscale co-organization of quantum dots and conjugated polymers using polymeric micelles as templates[J]. Journal of the American Chemical Society, 2008, 130(29):9481-9491. doi:  10.1021/ja801931m
    [17] KUILA B K, STAMM M. Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties[J]. J Mater Chem, 2010, 20(29):6086-6094. doi:  10.1039/c0jm00352b
    [18] 阿孜古丽·木尔赛力木.两亲性线形嵌段共聚物的合成及溶液自组装研究[D].西安: 西北大学, 2014.
    [19] WEI W, CHENG Q G, YA Q Q, et al. In situ synthesis of thermoresponsive polystyrenebpoly(Nisopropylacrylamide)bpolystyrene nanospheres and comparative study of the looped and linear poly(Nisopropylacrylamide)s[J]. Macromolecules, 2016, 49(7):2772-2781. doi:  10.1021/acs.macromol.6b00233
    [20] QIN J L, CHEN Y M, YAN D D, et al. Dispersible shaped nanoobjects from bulk microphase separation high Tg of block copolymers without chemical cross-linking[J]. Macromolecules, 2010, 43:10652-10658. doi:  10.1021/ma102514x
    [21] 任艳蓉.基于PEO成分的环境刺激响应性聚合物的研究[D].上海: 上海交通大学, 2010.
    [22] WYMAN I W, LIU G. Micellar structures of linear triblock terpolymers:Three blocks but many possibilities[J]. Polymer, 2013, 54(8):1950-1978. doi:  10.1016/j.polymer.2012.12.079
    [23] HUANG J, VIRJI S, WEI llER B H, et al. Polyaniline nanofibers:facile synthesis and chemical sensors[J]. Journal of the American Chemical Society, 2003, 125(2):314-315. doi:  10.1021/ja028371y
    [24] FABIANA D E, JUANA J S, ALEJANDRO H A, et al. Electrochemical detection of silver ions and the study of metalpolymer interactions on a polybenzidine film electrode[J]. Journal of Electroanalytical Chemistry, 2000, 494:60-68. doi:  10.1016/S0022-0728(00)00329-6
    [25] 阿孜古丽·木尔赛力木, 亚合亚·吾守尔, 哈力木拉提, 等.引发剂用量对聚联苯胺结构及性能的影响[J].精细化工, 2011, 28(10):954-958. http://d.old.wanfangdata.com.cn/Periodical/jxhg201110005
    [26] BHIM B P, AMRITA S, INDU P, et al. Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of d-and l-methionine[J]. Journal of Chromatography B, 2013, 912:65-74. doi:  10.1016/j.jchromb.2012.10.010
    [27] HUANG J, KANER R B. Nanofiber formation in the chemical polymerization of aniline:A mechanistic study[J]. Angewandte Chemie, 2004, 43(43):5941-5945. http://cn.bing.com/academic/profile?id=8dbc1e25fa31146b306550129236754f&encoded=0&v=paper_preview&mkt=zh-cn
    [28] TRAN H D, WANG Y, D'ARCY J M, et al. Toward an understanding of the formation of conducting polymer nanofibers[J]. Acs Nano, 2008, 2(9):1841-1848. doi:  10.1021/nn800272z
    [29] MUSLIM A, SHI Y, YAN Y C, et al. Preparation of cylindrical multi-compartment micelles by the hierarchical self-assembly of ABC triblock polymer in solution[J]. RSC Adv, 2015, 5:85446-85452. doi:  10.1039/C5RA19002A
    [30] LI Z B, KESSELMAN E, TALMON Y, et al. Multicompartment micelles from ABC miktoarm stars in water[J]. Science, 2004, 306(5693):98-101. doi:  10.1126/science.1103350
    [31] 董盟阳, 赵昕, 陈大俊, 等.聚(3, 4-乙烯二氧噻吩)/碳纸复合材料的制备及其在作为超级电容器电极材料的应用[J].化学世界, 2016, 57(8):469-474. http://www.cnki.com.cn/Article/CJFDTOTAL-HXSS201608002.htm
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  122
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 刊出日期:  2019-03-25

目录

    /

    返回文章
    返回