中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

溴丙烯在800 nm和400 nm飞秒激光强场下的解离电离

刘洋 刘博通 杨岩 孙真荣

刘洋, 刘博通, 杨岩, 孙真荣. 溴丙烯在800 nm和400 nm飞秒激光强场下的解离电离[J]. 华东师范大学学报(自然科学版), 2019, (3): 110-119. doi: 10.3969/j.issn.1000-5641.2019.03.012
引用本文: 刘洋, 刘博通, 杨岩, 孙真荣. 溴丙烯在800 nm和400 nm飞秒激光强场下的解离电离[J]. 华东师范大学学报(自然科学版), 2019, (3): 110-119. doi: 10.3969/j.issn.1000-5641.2019.03.012
LIU Yang, LIU Bo-tong, YANG Yan, SUN Zhen-rong. Dissociative ionization of allyl bromide in 800 nm and 400 nm intense femtosecond laser fields[J]. Journal of East China Normal University (Natural Sciences), 2019, (3): 110-119. doi: 10.3969/j.issn.1000-5641.2019.03.012
Citation: LIU Yang, LIU Bo-tong, YANG Yan, SUN Zhen-rong. Dissociative ionization of allyl bromide in 800 nm and 400 nm intense femtosecond laser fields[J]. Journal of East China Normal University (Natural Sciences), 2019, (3): 110-119. doi: 10.3969/j.issn.1000-5641.2019.03.012

溴丙烯在800 nm和400 nm飞秒激光强场下的解离电离

doi: 10.3969/j.issn.1000-5641.2019.03.012
基金项目: 

国家自然科学基金 11474096

国家自然科学基金 11727810

详细信息
    作者简介:

    刘洋, 女, 硕士研究生, 研究方向为原子分子超快动力学.E-mail:1156014088@qq.com

    通讯作者:

    杨岩, 男, 工程师, 研究方向为原子分子超快动力学.E-mail:yyang@lps.ecnu.edu.cn

  • 中图分类号: O431.1

Dissociative ionization of allyl bromide in 800 nm and 400 nm intense femtosecond laser fields

  • 摘要: 利用自行搭建的飞行时间质谱仪,在800 nm和400nm飞秒激光强场下对溴丙烯分子进行了电离解离过程的探究.通过分析离子产物的产率与激光功率的依赖关系并结合Keldysh因子计算,给出了实验中母体分子的电离机制;理论上,利用量子化学计算软件(Gaussian 09),对分子的化学键柔性力常数、反应通道出现势进行了计算,确认了溴丙烯分子的电离解离通道,发现了非共振多光子吸收导致的多个化学键的同时断裂,解释了母体分子离子电荷布局对反应路径的影响.
  • 图  1  飞行时间质谱实验装置示意图

    Fig.  1  Schematics of the time-of-flight mass spectrometer used in our experiment

    图  2  离子的飞行时间与离子质荷比平方根的模拟图

    Fig.  2  Simulated relationship between the ion flight time and the square root of ion mass ratio

    图  3  Br离子的飞行时间与离子初动能的关系

    Fig.  3  Simulated relationship between the time of flight of the Br ion and the initial kinetic energy of the same ion

    图  4  溴丙烯分子在不同激光功率下的质谱图

    Fig.  4  The TOF-MS of molecular allyl bromide at different laser power values

    图  5  不同光场条件下各产物离子产率随激光功率的变化

    Fig.  5  Ion yields with different laser power values

    图  6  Gaussian 09优化得到的溴丙烯分子结构

    Fig.  6  The optimized structure of allyl bromide molecule based on Gaussian 09

    图  7  从头计算的一价母体离子C$_{3}$H$_{5}$Br$^{+}$的解离路径, 其中黑色虚线代表离子C$_{3}$H$_{5}^{+}$和C$_{3}$H$_{3}^{+}$反应路径, 红色虚线代表离子Br$^{+}$、CH$_{2}^{+}$和C$_{2}$H$_{3}^{+}$的反应路径

    Fig.  7  Ab initio calculated dissociation pathways of singly-charged C$_{3}$H$_{5}$Br$^{+}$ ions. The black dashed lines represent the reaction channels for C$_{3}$H$_{5}^{+}$ and C$_{3}$H$_{3}^{+}$ ions, and the red dashed lines represent reaction channels for Br$^{+}$, CH$_{2}^{+}$, $^{ }$and C$_{2}$H$_{3}^{+}$ ions

    表  1  800 nm激光中Keldysh因子$\gamma $的理论值

    Tab.  1  The calculated Keldysh parameter $\gamma $ in a 800 nm laser field

    功率/mW 光场强度
    /($\times $10$^{14}$W$\cdot$cm$^{-2})$
    Keldysh因子$\gamma $
    1 500 8.68 0.309 4
    1 400 8.00 0.322 2
    1 300 7.32 0.336 8
    1 200 6.65 0.353 5
    1 100 5.97 0.372 9
    1 000 3.64 0.477 7
    900 1.96 0.650 5
    800 1.49 0.746 3
    700 1.04 0.890 4
    600 0.93 0.944 9
    500 0.81 1.010 8
    450 0.75 1.049 3
    400 0.70 1.092 7
    350 0.64 1.141 9
    300 0.58 1.198 4
    250 0.52 1.264 2
    200 0.46 1.342 2
    150 0.40 1.436 8
    100 0.34 1.554 5
    注:激光光强由实验与文献[17]的实验结果对照得到
    下载: 导出CSV

    表  2  柔性力常数计算值

    Tab.  2  Flexible force constant values

    断键类别 断键位置 柔性力常数/(N$\cdot$Bohr$^{-1}$)
    C$_{3}$H$_{5}$Br C$_{3}$H$_{5}$Br$^{+}$
    C-H 1-2 5.348 4.608
    C-H 1-8 5.291 4.149
    C-C 1-3 4.484 4.739
    C-Br 1-9 2.020 2.469
    C-H 3-4 5.464 5.525
    C=C 3-5 9.615 6.944
    C-H 5-6 5.525 5.587
    C-H 5-7 5.587 5.650
    下载: 导出CSV

    表  3  可能的反应通道及其反应出现势

    Tab.  3  Estimated reaction channels and related appearance energies

    反应通道 反应式 反应出现势/eV
    channel 1 C$_3$H$_5$Br$\to$C$_3$H$_5$Br$^{+}$+e$^{-}$ 9.43
    channel 2 C$_3$H$_5$Br$\to$C$_3$H$^{+}_5$+Br+e$^{-}$ 10.42
    channel 3 C$_3$H$_5$Br$\to$C$_3$H$^{+}_3$+Br+H$_{2+}$e$^{-}$ 11.68
    channel 4 C$_3$H$_5$Br$\to$C$_3$H$_5$Br$^{+}$+e$^{-}$ 15.58
    channel 5 C$_3$H$_5$Br$\to$C$_2$H$^{+}_3$+CH$_{2}$+Br+e$^{-}$ 16.56
    channel 6 C$_3$H$_5$Br$\to$C$_2$H$_3$+CH$^{+}_{2}$+Br+e$^{-}$ 17.77
    channel 7 C$_3$H$_5$Br$\to$C$_2$H$_3$+CH$^{+}_{2}$+Br$^{+}$+e$^{-}$ 21.19
    下载: 导出CSV

    表  4  一价母体离子电荷布局分析

    Tab.  4  Single parent ion charge population analysi

    反应通道 电荷布局 电离能/eV
    channel 2 C$_3$H$_5$Br$\to$C$_3$H$^{+}_5$+Br+e$^{-}$ 8.06
    (0.638-0.362) +1 0
    channel 4 C$_3$H$_5$Br$\to$C$_3$H$_5$+Br$^{+}$+e$^{-}$ 13.21
    (0.638-0.362) 0 +1
    下载: 导出CSV
  • [1] GOUGOUSI T, SAMARTZIS P C, KITSOPOULOS T N. Photodissociation study of CH3Br in the first continuum[J]. The Journal of Chemical Physics, 1998, 108(14):5742-5746. doi:  10.1063/1.475984
    [2] MAO R, ZHANG Q, ZANG J Z, et al. Multiphoton dissociative ionization of tert-pentyl bromide near 265 nm[J]. The Journal of Chemical Physics, 2011, 135(24):244302. doi:  10.1063/1.3671368
    [3] GARDINER S H, KARSILI T N, LIPCIUC M L, et al. Fragmentation dynamics of the ethyl bromide and ethyl iodide cations:A velocity-map imaging study[J]. Physical Chemistry Chemical Physics, 2014, 16(5):2167-2178. doi:  10.1039/C3CP53970A
    [4] PRATHER M J, WATSON R T. Stratospheric ozone depletion and future levels of atmospheric chlorine and bromine[J]. Nature, 1990, 344:729-734. doi:  10.1038/344729a0
    [5] MORGON N H, GIROLDO T, LINNERT H V, et al, Isomerization of the molecular ion of allyl bromide[J]. The Journal of Physical Chemistry, 1996, 100(46):18048-18056. doi:  10.1021/jp9605055
    [6] PARK M S, LEE K W, JUNG K H, Br and Cl atom formation dynamics of allyl bromide and chloride at 234 nm[J]. The Journal of Chemical Physics, 2001, 114(23):10368-10374. doi:  10.1063/1.1374581
    [7] PANDIT S, PRESTON T J, KING S J, et al. Evidence for concerted ring opening and C-Br bond breaking in UV-excited bromo cyclopropane[J]. The Journal of Chemical Physics, 2016, 144:244312. doi:  10.1063/1.4954373
    [8] OHTA K, ANTONOV L, YAMADA S, et al. Theoretical study of the two-photon absorption properties of several asymmetrically substituted stilbenoid molecules[J]. The Journal of Chemical Physics, 2007, 127(8):084504. doi:  10.1063/1.2753490
    [9] WU C Y, XIONG Y J, JI N, et al. Field ionization of aliphatic ketones by intense femtosecond laser[J]. The Journal of Physical Chemistry A, 2001, 105(2):374-377. doi:  10.1021/jp0024165
    [10] CORNAGGIA C, SCHMIDT M, NORMAND D. Coulomb explosion of CO2 in an intense femtosecond laser field[J]. Journal of Physics B:Atomic, Molecular and Optical Physics, 1994, 27(7):123-130. doi:  10.1088/0953-4075/27/7/002
    [11] BRANDHORST K, GRUNENBERG J. Efficient computation of compliance matrices in redundant internal coordinates from Cartesian Hessians for nonstationary points[J]. The Journal of Chemical Physics, 2010, 132:184101. doi:  10.1063/1.3413528
    [12] BRANDHORST K, GRUNENBERG J. How strong is it? The interpretation of force and compliance constants as bond strength descriptors[J]. Chemical Society Reviews, 2008, 37(8):1558-1567. doi:  10.1039/b717781j
    [13] HEHRE W J, STEWART R F, POPLE J A. Self-consistent molecular orbital methods. 1. use of Gaussian expansions of Slater-type atomic orbitals[J]. The Journal of Chemical Physics, 1969, 51:2657-2664. doi:  10.1063/1.1672392
    [14] FELDMANN D, PETRING D, OTTO G, et al. Angular distribution of photo electrons from above-thresholdionization (ATI) of xenon by 532 nm, 355 nm and 266 nm radiation[J]. Zeitschrift für Physik D Atoms, Molecules and Clusters, 1987, 6(1):35-42. doi:  10.1007/BF01436995
    [15] KAWATA I, KONO H, FUJIMURA Y. Adiabatic and diabatic responses of H2+ to an intense femtosecond laser pulse:Dynamics of the electronic and nuclear wave packet[J]. The Journal of Chemical Physics, 1999, 110(23):11152-11165. doi:  10.1063/1.478002
    [16] KELDYSH L V. Ionization in the field of a strong electromagnetic wave[J]. Journal of Experimental and Theoretical Physics, 1964, 47, 1945-1957. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0906.4098
    [17] GUO C M, LI M D, NIBARGER J P, et al. Single and double ionization of diatomic molecules in strong laser fields[J]. Physical Review A, 1998, 58(6):4271-4274. doi:  10.1103/PhysRevA.58.R4271
    [18] SOBEREVA.通过柔性力常数考察键的强度[OB/OL]. (2017-03-01)[2018-03-03]. http://sobereva.com/364.
    [19] REED A E, WEINSTOCK R B, WEINHOLD F. Natural population analysis[J]. The American Institute of Physics, 1985, 83(2):735-746. http://d.old.wanfangdata.com.cn/Periodical/gpxygpfx201709058
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  82
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-02
  • 刊出日期:  2019-05-25

目录

    /

    返回文章
    返回