中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硝化微生物富集及其种群结构与基因表达分析

余晨笛 侯立军 郑艳玲 刘敏 尹国宇 高娟 刘程 常永凯

余晨笛, 侯立军, 郑艳玲, 刘敏, 尹国宇, 高娟, 刘程, 常永凯. 硝化微生物富集及其种群结构与基因表达分析[J]. 华东师范大学学报(自然科学版), 2019, (3): 164-173. doi: 10.3969/j.issn.1000-5641.2019.03.018
引用本文: 余晨笛, 侯立军, 郑艳玲, 刘敏, 尹国宇, 高娟, 刘程, 常永凯. 硝化微生物富集及其种群结构与基因表达分析[J]. 华东师范大学学报(自然科学版), 2019, (3): 164-173. doi: 10.3969/j.issn.1000-5641.2019.03.018
YU Chen-di, HOU Li-jun, ZHENG Yan-ling, LIU Min, YIN Guo-yu, GAO Juan, LIU Cheng, CHANG Yong-kai. Community structure and gene expression analysis for nitrifier enrichment cultures[J]. Journal of East China Normal University (Natural Sciences), 2019, (3): 164-173. doi: 10.3969/j.issn.1000-5641.2019.03.018
Citation: YU Chen-di, HOU Li-jun, ZHENG Yan-ling, LIU Min, YIN Guo-yu, GAO Juan, LIU Cheng, CHANG Yong-kai. Community structure and gene expression analysis for nitrifier enrichment cultures[J]. Journal of East China Normal University (Natural Sciences), 2019, (3): 164-173. doi: 10.3969/j.issn.1000-5641.2019.03.018

硝化微生物富集及其种群结构与基因表达分析

doi: 10.3969/j.issn.1000-5641.2019.03.018
基金项目: 

国家重点研发计划课题 2016YFA0600904

国家自然科学基金 41725002

国家自然科学基金 41671463

国家自然科学基金 41130525

国家自然科学基金 41322002

国家自然科学基金 41601530

详细信息
    作者简介:

    余晨笛, 女, 硕士研究生, 研究方向为河口海岸生源要素循环.E-mail:fish5691@qq.com

    通讯作者:

    侯立军, 男, 博士生导师, 教授, 研究方向为河口海岸生源要素循环.E-mail:ljhou@sklec.ecnu.edu.cn

  • 中图分类号: X172

Community structure and gene expression analysis for nitrifier enrichment cultures

  • 摘要: 对采集的长江口潮滩沉积物进行了硝化微生物的富集培养,通过宏基因组技术分析了富集物中硝化微生物的种群结构.检测到4类硝化微生物(占测序总reads的34.7%),包括新近发现的全程氨氧化微生物(complete ammonia oxidizers,comammox)、严格的亚硝酸盐氧化菌Nitrospiraβ-变形菌门氨氧化细菌及氨氧化古菌.其中,comammox占硝化微生物类群的48%.此外,基于宏转录组技术分析了4类硝化菌群的基因表达特征(依据Evolutionarygenealogy of genes:Non-supervised Orthologous Groups数据库).研究探讨了潮滩沉积物富集物中硝化微生物的种群结构与基因表达特征,证明了长江口潮滩沉积环境中comammox的存在,并验证了其基因表达活性.研究结果加深了对河口地区硝化微生物的认识,对于未来硝化过程的分子生态学研究有重要启示意义.
  • 图  1  培养基及反应器中NH$_{4}^{+}$、NO$_{2}^{-}$、NO$_{3}^{-}$浓度及pH、溶解氧变化趋势

    Fig.  1  The variation trend of NH$_{4}^{+}$, NO$_{2}^{-}$, NO$_{3}^{-}$ concentration and pH, dissolved oxygen in medium and enrichment culture

    图  2  生物反应器中氨氧化微生物丰度

    注: 图中左侧纵坐标表示每ng DNA中AOAamoA的基因拷贝数, 右侧是每ng DNA中$\beta$-AOBamoA的基因拷贝数

    Fig.  2  The abundance of ammonia oxidizing microorganisms in the bioreactor system

    图  3  生物反应器中微生物类群丰度

    Fig.  3  The abundance of microorganisms in the bioreactor system

    图  4  生物反应器中硝化菌群丰度

    注: 各类群丰度为该类群占硝化菌群的比例.图中内圈表示富集物在种水平上注释到的主要硝化菌群的丰度(右侧图例), 外圈表示富集物中4类硝化菌群的丰度(左侧图例)

    Fig.  4  The abundance of nitrifiers in the bioreactor system

    图  5  生物反应器中硝化菌群表达量热图

    注: 图中NOB指严格亚硝酸盐氧化的NOB, COM指全程氨氧化微生物, AOA指氨氧化古菌, $\beta $-AOB指$\beta $-变形菌门的氨氧化细菌

    Fig.  5  Heatmap of gene expression of NOB (strictly nitrite oxidizing Nitrospira), COM (comammox), AOA (ammonia oxidizing archaea), and $\beta $-AOB ($\beta $-proteobacterial ammonia oxidizing)

  • [1] LAM P, LAVIK G, JENSEN M M, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone[J]. Proc Natl Acad Sci USA, 2009, 12(106):4752-4757. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2649953
    [2] KRAFT B, HALINA E T, RITIN S, et al. The environmental controls that govern the end product of bacterial nitrate respiration[J]. Science, 2014, 345(6197):676-679. doi:  10.1126/science.1254070
    [3] VAN KESSEL M A, SPETH D R, ALBERTSEN M, et al. Complete nitrification by a single microorganism[J]. Nature, 2015, 528(7583):555-559. doi:  10.1038/nature16459
    [4] DAIMS H, LEBEDEVA E V, PJEVAC P, et al. Complete nitrification by Nitrospira bacteria[J]. Nature, 2015, 528(7583):504-509. doi:  10.1038/nature16461
    [5] LI J, NEDWELL D B, BEDDOW J, et al. AmoA gene abundances and nitrification potential rates suggest that benthic ammonia-oxidizing bacteria and not archaea dominate N cycling in the Colne Estuary, United Kingdom[J]. Appl Environ Microbiol, 2014, 81(1):159-165. https://aem.asm.org/content/81/1/159
    [6] LAGOSTINA L, GOLDHAMMER T, RØY H, et al. Ammonia-oxidizing bacteria of the Nitrosospira cluster 1 dominate over ammonia-oxidizing archaea in oligotrophic surface sediments near the South Atlantic Gyre[J]. Environ Microbiol Reports, 2015, 7(3):404-413. doi:  10.1111/emi4.2015.7.issue-3
    [7] SHEN J, ZHANG L, DI H J, et al. A review of ammonia-oxidizing bacteria and archaea in Chinese soils[J]. Frontiers in Microbiology, 2012(3):296. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3424668
    [8] DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9):699-712. doi:  10.1016/j.tim.2016.05.004
    [9] PINTO A J, MARCUS D N, IJAZ U Z, et al. Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system[J]. Msphere, 2015(1):e15-e54. http://cn.bing.com/academic/profile?id=6da10174ae47f2d18c6e2e7d19f21c27&encoded=0&v=paper_preview&mkt=zh-cn
    [10] CHAO Y, MAO Y, YU K, et al. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach[J]. Appl Microbiol Biotechnol, 2016, 100(18):8225-8237. doi:  10.1007/s00253-016-7655-9
    [11] PALOMO A, JANE FOWLER S, GÜLAY A, et al. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp.[J]. The ISME Journal, 2016, 10(11):2569-2581. doi:  10.1038/ismej.2016.63
    [12] WANG Y, MA L, MAO Y, et al. Comammox in drinking water systems[J]. Water Research, 2017, 116:332-341. doi:  10.1016/j.watres.2017.03.042
    [13] BARTELME R P, MCLELLAN S L, NEWTON R J. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira[J]. Frontiers in Microbiology, 2017(8):101. doi:  10.3389/fmicb.2017.00101/full
    [14] WANG J, XIA F, ZELEKE J, et al. An improved protocol with a highly degenerate primer targeting coppercontaining membrane-bound monooxygenase genes for community analysis of methane-and ammonia-oxidizing bacteria[J]. FEMS Microbiol Ecol, 2017, 93(3):w244. doi:  10.1093/femsec/fiw244
    [15] HU H W, HE J Z. Comammox-a newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils & Sediments, 2017, 17(12):1-9. http://cn.bing.com/academic/profile?id=9c51968953d0edc56da219c1a7424e67&encoded=0&v=paper_preview&mkt=zh-cn
    [16] PJEVAC P, SCHAUBERGER C, POGHOSYAN L, et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017(8):1508. https://uscholar.univie.ac.at/get/o:866916
    [17] BAKER B J, LAZAR C S, TESKE A P, et al. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria[J]. Microbiome, 2015, 3(1):3-14. doi:  10.1186/s40168-014-0064-3
    [18] MURRAY N J, MA Z, FULLER R A. Tidal flats of the Yellow Sea:A review of ecosystem status and anthropogenic threats[J]. Austral Ecology, 2015, 40(4):472-481. doi:  10.1111/aec.2015.40.issue-4
    [19] ZHENG Y, HOU L, NEWELL S, et al. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze Estuary[J]. Appl Environ Microbiol, 2013, 80(1):408-419. http://cn.bing.com/academic/profile?id=728cd25b97d7676e409df9921fb6376e&encoded=0&v=paper_preview&mkt=zh-cn
    [20] STARR M P, STOLP H, TRÜPER H G, et al. The prokaryotes: a handbook on habitats, isolation and identification of bacteria[M].[S.l.]: Springer Science & Business Media, 1981.
    [21] HOU L J, LIU M, XU S Y, et al. The effects of semi-lunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze estuary, China[J]. Estuarine, Coastal and Shelf Science, 2007, 73(3/4):607-616. http://cn.bing.com/academic/profile?id=5cda6c2c61073a42cc9370009085d429&encoded=0&v=paper_preview&mkt=zh-cn
    [22] ROTTHAUWE J H, WITZEL K P, LIESACK W. The ammonia monooxygenase structural gene amoa as a functional marker:Molecular fine-scale analysis of natural ammonia-oxidizing populations[J]. Appl Environ Microbiol, 1997, 63(12):4704-4712. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_168793
    [23] FRANCIS C A, ROBERTS K J, BEMAN J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean.[J]. Proc Natl Acad Sci USA, 2005, 102(41):14683-14688. doi:  10.1073/pnas.0506625102
    [24] LI D, LIU C, LUO R, et al. MEGAHIT:An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10):1674-1676. doi:  10.1093/bioinformatics/btv033
    [25] DR M, WALLER A, SUNAGAWA S, et al. Assessment of metagenomic assembly using simulated next generation sequencing data[J]. PLoS ONE, 2012, 7(2):e31386. doi:  10.1371/journal.pone.0031386
    [26] NIELSEN H B, ALMEIDA M, JUNCKER A S, et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes[J]. Nature Biotechnology, 2014, 32(8):822-828. doi:  10.1038/nbt.2939
    [27] KARLSSON F H, FÅK F, NOOKAEW I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome[J]. Nature Communications, 2012, 3(4):1245. http://cn.bing.com/academic/profile?id=eacc16955fc99d7d051f15dd54e54f69&encoded=0&v=paper_preview&mkt=zh-cn
    [28] ZELLER G, TAP J, VOIGT A Y, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Mol Syst Biol, 2014, 10(11):766. doi:  10.15252/msb.20145645
    [29] LI J, JIA H, CAI X, et al. An integrated catalog of reference genes in the human gut microbiome[J]. Nature Biotechnology, 2014, 32(8):834-841. doi:  10.1038/nbt.2942
    [30] GU S, FANG L, XU X. UNIT 11.11 using SOAPaligner for short reads alignment[J]. Current Protocols in Bioinformatics, 2013, 44:11.
    [31] FU L, NIU B, ZHU Z, et al. CD-HIT:Accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23):3150-3152. doi:  10.1093/bioinformatics/bts565
    [32] COTILLARD A, KENNEDY S P, KONG L C, et al. Dietary intervention impact on gut microbial gene richness[J]. Nature, 2013, 500(7464):585-588. doi:  10.1038/nature12480
    [33] BUCHFINK B, XIE C, HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2014, 12(1):59-60. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0233839171/
    [34] QIN J, LI R, RAES J, et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285):59-65. doi:  10.1038/nature08821
    [35] HUSON D H, MITRA S, RUSCHEWEYH H J, et al. Integrative analysis of environmental sequences using MEGAN4[J]. Genome Research, 2011, 21(9):1552-1560. doi:  10.1101/gr.120618.111
    [36] PRUESSE E, QUAST C, KNITTEL K, et al. SILVA:A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB[J]. Nucleic Acids Research, 2007, 35(21):7188-7196. doi:  10.1093/nar/gkm864
    [37] GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652. doi:  10.1038/nbt.1883
    [38] TRAPNELL C, WILLIAMS B A, PERTEA G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28(5):511-515. doi:  10.1038/nbt.1621
    [39] LI B, DEWEY C N. RSEM:Accurate transcript quantification from RNA-Seq data with or without a reference genome[J]. BMC Bioinformatics, 2011, 12(1):323. doi:  10.1186/1471-2105-12-323
    [40] PARK B J, PARK S J, YOON D N, et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria[J]. Appl Environ Microbiol, 2010, 76(22):7575-7587. doi:  10.1128/AEM.01478-10
    [41] 金文标, 李志鑫, 岳洋洋, 等.一种污水处理系统中氨氧化古细菌富集培养的方法: 中国, CN 103451120[P]. 2013-12-18. http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=CN201310041633.2
    [42] GONZALEZ-CABALEIRO R, CURTIS T P O. Study of the competition betw éen complete nitrification by a single organism and ammonia-and nitrite-oxidizing bacteria[C]//Frontiers in Wastewater Treatment and Modelling. Lecture Notes in Civil Engineering, MANNINA G, Cham, 2017: 287-291.
    [43] KITS K D, SEDLACEK C J, LEBEDEVA E V, et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle[J]. Nature, 2017, 549(7671):269-272. doi:  10.1038/nature23679
    [44] COSTA E, PÉREZ J, KREFT J. Why is metabolic labour divided in nitrification?[J]. Trends in Microbiology, 2006, 14(5):213-219. doi:  10.1016/j.tim.2006.03.006
  • 加载中
图(5)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  114
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-02
  • 刊出日期:  2019-05-25

目录

    /

    返回文章
    返回