中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于红外高光谱探测器的大气CO2反演通道选择

李璐含 束炯 尹球 张雷 刘延安

李璐含, 束炯, 尹球, 张雷, 刘延安. 基于红外高光谱探测器的大气CO2反演通道选择[J]. 华东师范大学学报(自然科学版), 2019, (3): 186-198. doi: 10.3969/j.issn.1000-5641.2019.03.020
引用本文: 李璐含, 束炯, 尹球, 张雷, 刘延安. 基于红外高光谱探测器的大气CO2反演通道选择[J]. 华东师范大学学报(自然科学版), 2019, (3): 186-198. doi: 10.3969/j.issn.1000-5641.2019.03.020
LI Lu-han, SHU Jiong, YIN Qiu, ZHAGN Lei, LIU Yan-an. HIRAS channel selection for atmospheric CO2 retrievals[J]. Journal of East China Normal University (Natural Sciences), 2019, (3): 186-198. doi: 10.3969/j.issn.1000-5641.2019.03.020
Citation: LI Lu-han, SHU Jiong, YIN Qiu, ZHAGN Lei, LIU Yan-an. HIRAS channel selection for atmospheric CO2 retrievals[J]. Journal of East China Normal University (Natural Sciences), 2019, (3): 186-198. doi: 10.3969/j.issn.1000-5641.2019.03.020

基于红外高光谱探测器的大气CO2反演通道选择

doi: 10.3969/j.issn.1000-5641.2019.03.020
基金项目: 

国家自然科学基金 41271055

国家自然科学基金 41601469

上海市气象局科技开发项目 YJ201408

详细信息
    作者简介:

    李璐含, 女, 硕士研究生, 研究方向为气候变化与大气环境遥感

    通讯作者:

    束炯, 男, 教授, 博士生导师, 研究方向为气候变化与大气环境遥感.E-mail:jshu@geo.ecnu.edu.cn

  • 中图分类号: P407

HIRAS channel selection for atmospheric CO2 retrievals

  • 摘要: 红外高光谱探测器(HIRAS)搭载于2017年11月15日发射的FY-3D卫星上,其探测范围覆盖15 μm及4.3 μm波段的CO2强吸收带,可用于反演CO2大气柱浓度,且可以与其他温室气体传感器数据比较印证,有助于组成全球CO2的监测星座.选择对CO2变化敏感而受其他参数干扰最小的波段,是卫星走向实用阶段前最重要的研究任务之一.本研究首先取HIRAS光谱分辨率较高的15 μm波段作为研究对象,利用逐线积分辐射传输模式,模拟了5种标准大气模式下卫星接收的大气出射辐射,分析了CO2与H2O、O3、地表温度和地表发射率等其他影响参数的敏感性;然后基于最优敏感性廓线选择的方法,以信噪比、CO2的响应和雅克比廓线为依据,选出了不同地区、不同季节背景下5组通道,并讨论了不同大气层结下通道特征的差异;最后假设在不同的仪器噪声下进行选择试验,指出了仪器噪声越低,越有助于选出CO2敏感高度在平流层的通道.通道选择的结果及特性亦可为未来同类仪器的设计提供参考.
  • 图  1  HIRAS 15 $\mu$m通道的CO$_2$敏感性

    注: (a)为热带, (b)为中纬度夏季, (c)为中纬度冬季, (d)为亚北极夏季, (e)为亚北极冬季; 单位为K; 虚线为$\Delta T_\mathrm B=0.0$ K

    Fig.  1  HIRAS channel sensitivities to CO$_2$ in the 15 $\mu$m band

    图  2  HIRAS 15 $\mu$m通道的H$_2$O敏感性

    注: (a)为热带, (b)为中纬度夏季, (c)为中纬度冬季, (d)为亚北极夏季, (e)为亚北极冬季; 单位为K

    Fig.  2  HIRAS channel sensitivities to H$_2$O in the 15 $\mu$m band

    图  3  HIRAS 15 $\mu$m通道的O$_3$敏感性

    注: (a)为热带, (b)为中纬度夏季, (c)为中纬度冬季, (d)为亚北极夏季, (e)为亚北极冬季;单位为K;虚线为$\Delta T_\mathrm B=0.0$ K

    Fig.  3  HIRAS channel sensitivities to O$_3$ in the 15 $\mu$m band

    图  4  HIRAS 15 $\mu$m通道的地表温度及发射率敏感性

    注: (a)为热带, (b)为中纬度夏季, (c)为中纬度冬季, (d)为亚北极夏季, (e)为亚北极冬季; 单位为K

    Fig.  4  HIRAS channel sensitivities to surface temperature and emissivity in the 15 $\mu$m band

    图  5  热带地区33个CO$_2$通道OSP方法的3个选择标准

    注: (a)扰动所引起的CO$_2$信号响应, 单位为K; (b)信噪比; (c)CO$_2$雅克比廓线峰值压强, 单位为hPa

    Fig.  5  The three criteria for the 33 channels of the tropical set obtained with the OSP method

    图  6  5种大气模式下CO$_2$反演通道的雅克比廓线

    注: (a)为热带, (b)为中纬度夏季, (c)为中纬度冬季, (d)为亚北极夏季, (e)为亚北极冬季; 横坐标单位为K/(mL$\cdot$L$^{-1}$)

    Fig.  6  The Jacobian profiles for CO$_2$ retrievals of five types of air mass

    图  7  5种大气背景下反演CO$_2$通道的光谱位置

    注: (a)为热带, (b)为中纬度夏季, (c)为中纬度冬季, (d)为亚北极夏季, (e)为亚北极冬季

    Fig.  7  Spectral location of five types of air mass for CO$_2$ retrievals

    表  1  AIRS, IASI, CrIS及HIRAS仪器载荷

    Tab.  1  Instrument characteristics of the AIRS, IASI, CrIS, and HIRAS

    参数 红外高光谱探测器
    AIRS IASI CrIS HIRAS
    分光技术 光栅式 干涉式 干涉式 干涉式
    卫星机构 NASA/JPL EUMESTAT/CNES NOAA IPO NSMC
    卫星平台 Aqua MetOp-A/B Suomi NPP FY-3D
    运行高度/km 705 817 824 836
    光谱范围/cm$^{-1}$ 649-1135 645-2760 650-1095 650-1136
    1217-1613 1210-1750 1210-1750
    2169-2674 2155-2550 2155-2550
    光谱分辨率 0.25 cm$^{-1}$ 0.625/1.25/2.5 cm$^{-1}$ 0.625/1.25/2.5 cm$^{-1}$
    通道数 2378 8461 1305 1370
    灵敏度(用户)
    NE$\Delta$T/K
    0.15~0.35 0.2~0.35 0.14 0.15~0.4@250
    0.06 0.1~0.7@250
    0.007 0.3~1.2@250
    空间分辨率
    (星下点)/km
    13.5 12 14 16
    视场/$(^{\circ})$ $\pm 49.5$ $\pm 48.3$ $\pm 50$ $\pm 50.4$
    幅宽/km 1 650 2 400 2 200 2 250
    瞬时视场/$^{\circ}$ 1.1 0.822 5 0.963 1.1
    发射日期 2002-5-4 2006-10-19
    2012-9-17
    2011-10-28 2017-11-15
    下载: 导出CSV

    表  2  5种大气模式下HIRAS反演CO$_{2}$的通道号

    Tab.  2  The HIRAS channels of the five types of air mass for CO$_{2}$ retrievals

    波数/cm$^{-1}$ 大气模式 波数/cm$^{-1}$ 大气模式
    655(s) Tr, MLW, SAS, SAW 704.375(t) Tr, MLS, MLW, SAS, SAW
    658.125(s) Tr, MLS, MLW, SAS 706.25(t) Tr, MLS, MLW, SAS, SAW
    662.5(s) MLW, SAS, SAW 706.875(t) Tr, MLS, MLW, SAS, SAW
    663.125(s) MLS, SAS 709.375(t) MLS, MLW, SAS, SAW
    664.375(s) Tr, MLS, SAS 710.625(t) Tr, MLS, MLW, SAS, SAW
    665(s) Tr, MLS 711.25(t) Tr, MLS, MLW, SAS, SAW
    666.875(s) Tr 711.875(t) MLS, MLW, SAS, SAW
    667.5(s) MLW, SAS, SAW 716.25(t) Tr, MLS, MLW, SAS, SAW
    668.125(s) MLW, SAS, SAW 716.875(t) Tr, MLS, MLW, SAS, SAW
    668.75(s) MLS, MLW, SAS, SAW 717.5(t) Tr
    674.375(s) SAW 720.625(s) Tr, MLS, MLW, SAS, SAW
    677.5(s) MLW, SAS 721.25(t) Tr, MLS, MLW, SAS, SAW
    680.625(s) Tr, MLS, MLW, SAS 721.875(t) Tr
    694.375(t) Tr, MLS, MLW, SAS, SAW 725.625(t) Tr, MLS, MLW, SAS, SAW
    695.625(t) Tr 733.125(t) Tr, MLS
    696.25(t) Tr, MLS, MLW, SAS, SAW 733.75(t) Tr, MLS
    697.5(t) Tr, MLS, MLW, SAS, SAW 736.25(t) MLS, MLW
    698.125(t) Tr, MLS 737.5(t) Tr, MLS, MLW, SAS, SAW
    699.375(t) Tr, MLS, MLW, SAS, SAW 738.125(t) MLS, MLW, SAS, SAW
    700.625(t) Tr, MLS, MLW, SAS, SAW 741.25(t) Tr, MLS, MLW, SAS, SAW
    701.25(t) Tr 746.875(t) Tr, MLS, MLW, SAS, SAW
    702.5(t) Tr, MLS, MLW, SAS, SAW 751.25(t) MLS, MLW, SAS, SAW
    703.75(t) Tr, MLS, MLW, SAS, SAW
    注: Tro, MLS, MLW, SAS and SAW分别代表热带, 中纬度夏季, 中纬度冬季, 亚北极夏季以及亚北极冬季; (t)和(s)分别代表对流层和平流层通道
    下载: 导出CSV

    表  3  5种大气模式下通道668.125 cm$^{-1}$的选择标准

    Tab.  3  The criteria for five types of air mass at the 668.125 cm$^{-1}$ band

    大气模式 敏感高度/hPa 雅克比 信噪比 CO$_{2}$亮温变化/K
    Tro 2.20 0.002 70 0.279 96 -0.038 99
    MLS 2.41 0.003 07 0.573 01 -0.092 57
    MLW 1.80 0.003 66 41.914 44 -0.156 76
    SAS 2.48 0.003 44 43.901 87 -0.093 95
    SAW 1.11 0.002 83 26.453 04 -0.143 64
    注: Tro为热带, MLS为中纬度夏季, MLW为中纬度冬季, SAS为亚北极夏季, SAW为亚北极冬季; 雅克比单位为K/(mL$\cdot$L$^{-1}$)
    下载: 导出CSV
  • [1] 王倩, 杨忠东, 毕研盟.高光谱遥感仪器的光谱参数和信噪比需求[J].应用气象学报, 2014, 25(5):600-609. http://d.old.wanfangdata.com.cn/Periodical/yyqxxb201405009
    [2] WMO GREENHOUSE GAS BULLETIN. The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2016[EB/OL].[2018-03-01]. http://www._wmo._int/pages/prog/arep/gaw/ghg/ghgbulletin13.html.
    [3] BUTLER J H, MONTZKA S A. The NOAA Annual Greenhouse Gas Index-2017 Update[R]. NOAA Earth System Research Laboratory, 2017.
    [4] BALLANTYNE A P, ALDEN C B, MILLER J B, et al. Increase in observed net carbon dioxide uptake by land oceans during the past 50 years[J]. Nature, 2012, 488(7409):70. doi:  10.1038/nature11299
    [5] CHÉDIN A, SAUNDERS A, HOLLINGSWORTH A, et al. The feasibility of monitoring CO2 from highresolution infrared sounders[J]. Journal of Geophysical Research, 2003, 108(D2):49-65. http://cn.bing.com/academic/profile?id=65baa55219a5a8e75934d8b97578867f&encoded=0&v=paper_preview&mkt=zh-cn
    [6] ZHOU M, SHU J, SONG C, et al. Sensitivity studies for atmospheric carbon dioxide retrieval from atmospheric infrared sounder observations[J]. Journal of Applied Remote Sensing, 2014, 8(1). DOI:10. 1117/1. JRS. 8. 083697.
    [7] SONG C, SHU J, ZHOU M, et al. Sensitivity studies of high-precision methane column concentration inversion using a line-by-line radiative transfer model[J]. Frontiers of Earth Science, 2013, 7(4):439-446. doi:  10.1007/s11707-013-0391-x
    [8] CHAHINE M T, CHEN L, DIMOTAKIS P, et al. Satellite remote sounding of mid-tropospheric CO2[J]. Geophysical Research Letters, 2008, 35(17):179-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ab03295e010008cb9f962a128efc6671
    [9] WENG F, ZHAO L, FERRARO R R, et al. Advanced microwave sounding unit cloud and precipitation algorithms[J]. Radio Science, 2003, 38(4). DOI:10. 1029/2002RS002679.
    [10] CREVOISIER C, CHÉDIN A, MATSUEDA H, et al. First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations[J]. Atmospheric Chemistry & Physics, 2009, 9(14):4797-4810. http://cn.bing.com/academic/profile?id=8bcf7fa3fc64387e37e9db3a660556ce&encoded=0&v=paper_preview&mkt=zh-cn
    [11] 陆宁.基于CrIS热红外数据的晴空条件下CO2浓度遥感反演研究[D].北京: 北京交通大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10004-1015558195.htm
    [12] 漆成莉, 顾明剑, 胡秀清, 等.风云三号卫星红外高光谱探测技术及潜在应用[J].气象科技进展, 2016, 6(1):88-93. http://d.old.wanfangdata.com.cn/Periodical/qxkjjz201601021
    [13] RABIER F, FOURRIE N, CHAFÄI D, et al. Channel selection methods for Infrared Atmospheric Sounding Interferometer radiances[J]. Quarterly Journal of the Royal Meteorological Society, 2002, 128(581):1011-1027. doi:  10.1256/0035900021643638
    [14] 毕研盟, 杨忠东, 卢乃锰, 等.近红外高光谱探测仪通道选择[J].应用气象学报, 2014, 25(2):143-149. doi:  10.3969/j.issn.1001-7313.2014.02.003
    [15] SHANNON C E. The mathematical theory of communication[M]. Champaign, IL:University of Illinois Press, 1998.
    [16] 董超华.卫星高光谱红外大气遥感原理和应用[M].北京:科学出版社, 2013:78-79, 87.
    [17] RODGERS C D. Information content and optimization of high-spectral-resolution measurements[C]//SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, 1996. https://www.researchgate.net/publication/241272304_Information_content_and_optimization_of_high-spectral-resolution_measurements
    [18] LERNER J A, WEISZ E, KIRCHENGAST G. Temperature and humidity retrieval from simulated Infrared Atmospheric Sounding Interferometer (IASI) measurements[J]. Journal of Geophysical Research Atmospheres, 2002, 107(D14):ACH 4-1-ACH 4-11. http://cn.bing.com/academic/profile?id=319f49c37d3e28b4d517253fad9b62d3&encoded=0&v=paper_preview&mkt=zh-cn
    [19] CREVOISIER C, CHEDIN A, SCOTT N A. AIRS channel selection for CO2, and other trace-gas retrievals[J]. Quarterly Journal of the Royal Meteorological Society, 2003, 129:2719-2740. doi:  10.1256/qj.02.180
    [20] 刘毅, 吕达仁, 陈洪滨, 等.卫星遥感大气CO2的技术与方法进展综述[J].遥感技术与应用, 2011, 26(2):247-254. http://d.old.wanfangdata.com.cn/Periodical/ygjsyyy201102017
    [21] PAGANO T S, FETZER E J. The Atmospheric Infrared Sounder (AIRS) on the NASA Aqua Spacecraft:A general remote sensing tool for understanding atmospheric structure, dynamics, and composition[J]. Proceedings of SPIE, 2010, 7827. DOI:10. 1117/12. 865335.
    [22] HANY, CHEN Y, JIN X, et al. Cross Track Infrared Sounder(CrIS) Sensor Data Record (SDR) User's GuideVersion 1[R]. Washington, DC: NOAA Technical ReportNESDIS 143, 2013. https://www.star.nesdis.noaa.gov/jpss/documents/UserGuides/CrIS_SDR_Users_Guide1p1_20180405.pdf
    [23] 张磊, 董超华, 张文建, 等.星载干涉式超高光谱分辨率红外大气探测仪及其产品[J].气象科技, 2008, 36(5):639-642. doi:  10.3969/j.issn.1671-6345.2008.05.026
    [24] SIMEONI D, BLUMSTEIN D, MACIASZEK T. Design and development of IASI instrument[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2004, (5543):208-219. doi:  10.1117-12.561090/
    [25] AUMANN H H, PAGANO T S, STROW L L. Atomospheric Infrared Sounder (AIRS) on the Earth Observing System[C]//International Asia-Pacific Symposium on Remote Sensing of, the Atmosphere, Environment, and Space. International Society for Optics and Photonics, 2001: 332-343.
    [26] 漆成莉. FY-3D星红外高光谱大气探测仪辐射定标方法研究[C]//第33届中国气象学会年会S21新一代气象卫星技术发展及其应用.中国气象学会, 2016: 4. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX201611021047.htm
    [27] 周曼蒂.对流层CO2浓度卫星遥感反演及误差分析[D].上海: 华东师范大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10269-1013272761.htm
    [28] ALVARADO M J, PAYNE V H, MLAWER E J, et al. Performance of the line-by-line radiative transfer model (LBLRTM) for temperature, water vapor, and trace gas retrievals:recent updates evaluated with IASI case studies[J]. Atmospheric Chemistry & Physics, 2013, 13(14):6687-6711. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_25c76d0e836249557cef98ee7ef39442
    [29] 叶函函, 王先华, 吴军, 等.二氧化碳浓度高精度反演的敏感性研究[J].大气与环境光学学报, 2011, 6(3):208-214. doi:  10.3969/j.issn.1673-6141.2011.03.007
    [30] CLOUGH S A, SHEPHARD M W, MLAWER E J, et al. Atmospheric radiative transfer modeling:Asummary of the AER codes[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 91(2):233-244. doi:  10.1016-j.jqsrt.2004.05.058/
    [31] GAMBACORTA A, BARNET C D. Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for the Cross-Track Infrared Sounder (CrIS)[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(6):3207-3216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=541eed6c5c21e2fe83e6dc86d3793abc
    [32] CONWAY T J, TANS P P, WATERMAN L S, et al. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network[J]. Journal of Geophysical Research Atmospheres, 1994, 99(D11):22831-22856. doi:  10.1029/94JD01951
    [33] CHÉDIN A, HOLLINGSWORTH A, SCOTT N A, et al. Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations[J]. Geophysical Research Letters, 2002, 29(8):110-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bef0cdf537c53726e69b14a08d16c9a
    [34] DIAO A, SHU J, SONG C. Global consistency check of AIRS and IASI total CO2 column concentrations using WDCGG ground-based measurements[J]. Frontiers of Earth Science, 2017, 11(1):1-10. doi:  10.1007/s11707-016-0573-4
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  111
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-05
  • 刊出日期:  2019-05-25

目录

    /

    返回文章
    返回