中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硫化物对黑臭河道底泥反硝化潜势的影响作用研究

汪珊 朱瑾 何岩 黄民生 周运昌

汪珊, 朱瑾, 何岩, 黄民生, 周运昌. 硫化物对黑臭河道底泥反硝化潜势的影响作用研究[J]. 华东师范大学学报(自然科学版), 2019, (4): 156-164. doi: 10.3969/j.issn.1000-5641.2019.04.015
引用本文: 汪珊, 朱瑾, 何岩, 黄民生, 周运昌. 硫化物对黑臭河道底泥反硝化潜势的影响作用研究[J]. 华东师范大学学报(自然科学版), 2019, (4): 156-164. doi: 10.3969/j.issn.1000-5641.2019.04.015
WANG Shan, ZHU Jin, HE Yan, HUANG Min-sheng, ZHOU Yun-chang. Effect of sulfide on the denitrification potential of sediment in black-odor rivers[J]. Journal of East China Normal University (Natural Sciences), 2019, (4): 156-164. doi: 10.3969/j.issn.1000-5641.2019.04.015
Citation: WANG Shan, ZHU Jin, HE Yan, HUANG Min-sheng, ZHOU Yun-chang. Effect of sulfide on the denitrification potential of sediment in black-odor rivers[J]. Journal of East China Normal University (Natural Sciences), 2019, (4): 156-164. doi: 10.3969/j.issn.1000-5641.2019.04.015

硫化物对黑臭河道底泥反硝化潜势的影响作用研究

doi: 10.3969/j.issn.1000-5641.2019.04.015
基金项目: 

国家自然科学基金 41877477

上海市科技创新行动计划 18DZ1203806

详细信息
    作者简介:

    汪珊, 女, 本科生.E-mail:shanwangss@163.com

    通讯作者:

    何岩, 女, 副教授, 研究方向为水环境治理与修复.E-mail:yhe@des.ecnu.edu.cn

  • 中图分类号: X522

Effect of sulfide on the denitrification potential of sediment in black-odor rivers

  • 摘要: 通过探究不同浓度硫化物对黑臭河道底泥反硝化过程的影响,同时分析底泥细菌、反硝化菌和硫酸盐还原菌的响应变化,为强化底泥反硝化脱氮提供理论依据与技术支撑.研究结果表明:较低浓度的硫化物(8 mg-1)对底泥反硝化潜势无明显影响;适宜浓度的硫化物(40和64 mg-1)对底泥反硝化有明显的促进作用,且浓度越高促进作用越明显;当硫化物浓度升高到96 mg-1及以上时,还原态硫对反硝化过程起抑制作用,浓度越高抑制作用越明显.底泥经过一段时间的反硝化培养,细菌多样性以变形菌门、绿弯菌门、拟杆菌门为主;同时,底泥细菌总数明显增加,代谢菌群的nirS丰度比、dsrB丰度比分别为1.42%和0.05%,相较原始底泥(0.15%,0.19%),反硝化细菌增值明显,但硫酸盐还原菌数量有所下降.
  • 图  1  采样点地理位置图

    Fig.  1  Location of the Lidianpu River and the sampling sites

    图  2  不同硫化物浓度下底泥硝态氮含量变化

    Fig.  2  Change in concentrations of nitrate for sediment incubations with different sulfide concentrations

    图  3  不同硫化物浓度下底泥培养组各理化指标变化情况

    Fig.  3  Changes in physical and chemical indicators of sediment incubations with different sulfide concentrations

    图  4  硫化物40 mg$\cdot $L$^{-1}$实验组(左)与对照组(右)反硝化底泥菌群结构

    Fig.  4  Bacterial species of sediment incubations with 40 mg$\cdot $L$^{-1}$ of sulfide versus control group

    表  1  不同培养实验组所添加基质

    Tab.  1  ddition of substrates in each sediment incubation assays

    mg·L-1
    组号 1 2 3 4 5
    硫化物浓度 0 8 40 64 96
    注:实验组2在第66天将硫化物浓度提高至160 mg$\cdot $L$^{-1}$
    下载: 导出CSV

    表  2  高通量测序及荧光定量所用引物

    Tab.  2  Primers used in high-throughput sequencing and real-time PCR analysis

    名称 引物 引物序列(5$'\to 3'$) 文献
    反硝化nirS cd3aF GTSAACGTSAAGGARACSGG [13]
    R3cd GASTTCGGRTGSGTCTTGA
    硫酸盐还原dsrB DSRp2060F CAACATCGTYCAYACCCAGGG [28]
    DSR4R GTGTAGCAGTTACCGCA
    细菌16S-V3V4区 341F CCTACGGGAGGCAGCAG [45]
    806R GGACTACHVGGGTWTCTAAT
    下载: 导出CSV

    表  3  培养周期内添加不同浓度硫化物的各底泥培养组中硝酸盐还原速率分析

    Tab.  3  Assessment of nitrate reduction rate for sediment incubations with the addition of different sulfide concentrations over different time periods

    d
    培养周期 $D_{1}$ $D_{2}$ $D_{3}$ $D_{4}$ $D_{5}$
    1 14 9 9 5 $-$
    2 14 10 10 6 $-$
    3 11 10 6 5 $-$
    4 10 10 6 6 $-$
    5 9 9 6 6 $-$
    6 10 $-$ 6 3 $-$
    7 9 $-$ 6 3 $-$
    8 9 $-$ 6 3 $-$
    注: $D_{1}$—$D_{5}$分别表示一个培养周期内实验组1—5硝酸盐还原率达到98%以上所需天数; "$-$"表示硝酸盐还原受到抑制; 从第6个培养周期开始实验组2的硫化物浓度增加到160 mg$\cdot $L$^{-1}$
    下载: 导出CSV

    表  4  反硝化培养组底泥样品细菌多样性信息统计

    Tab.  4  Statistics for bacterial diversity in sediment from denitrification incubations

    样品 有效序列数量/条 OTUs Chao1指数 Shannon指数 Simpson指数
    实验组3 22 036 872 1 285.7 6.247 4 0.956 32
    对照组 22 418 1 130 1 655.1 6.711 9 0.971 12
    注:实验组3添加硫化物浓度为40 mg$\cdot $L$^{-1}$, 对照组不添加硝酸盐, 只添加硫化物40 mg$\cdot $L$^{-1}$
    下载: 导出CSV

    表  5  反硝化培养组底泥细菌门水平组成

    Tab.  5  Composition of bacteria at the phylum level in sediment from denitrification-assessed

    Actinobacteria Bacteroidetes Caldiserica Chloroflexi Firmicutes Proteobacteria
    实验组3 1.13% 13.21% 0.49% 22.96% 3.01% 53.75%
    对照组 1.33% 21.61% 2.13% 37.45% 1.73% 28.31%
    注:实验组3添加硫化物浓度为40 mg$\cdot $L$^{-1}$, 对照组不添加硝酸盐, 只添加硫化物40 mg$\cdot $L$^{-1}$
    下载: 导出CSV

    表  6  反硝化底泥中氮硫代谢关键菌群丰度响应

    Tab.  6  Statistics for bacterial diversity in sediment from denitrification incbuation

    样品 16S基因丰度 nirS基因丰度 dsrB基因丰度 nirS丰度比 dsrB丰度比
    原始底泥 1.06$\times$10$^{9}$ 1.58$\times$10$^{6}$ 1.99$\times $10$^{6}$ 0.15% 0.19%
    实验组3 2.61$\times $10$^{9}$ 3.71$\times $10$^{7}$ 1.32$\times $10$^{6}$ 1.42% 0.05%
    注: nirS丰度比和dsrB丰度比均为对应功能基因丰度与16S基因丰度的比值
    下载: 导出CSV
  • [1] 朱艺双, 朱瑾, 何岩.城市黑臭河道内源硫与硝酸盐异化还原过程的耦合机制研究[C]//2017中国环境科学学会科学与技术年会论文集(第二卷), 2017.
    [2] SHAO M F, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:Diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042. doi:  10.1007/s00253-010-2847-1
    [3] SENGA Y, MOCHIDA K, FUKUMORI R, et al. N2O accumulation in estuarine and coastal sediments:The influence of H2S on dissimilatory nitrate reduction[J]. Estuarine, Coastal and Shelf Science, 2006, 67(1/2):231-238.
    [4] BOWLES M W, NIGRO L M, TESKE A P, et al. Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments[J]. Frontiers in Microbiology, 2012, 3(377):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003591418
    [5] 汪建华.城市黑臭河道氮转化途径分型表征及微生物作用机理研究[D].上海: 华东师范大学, 2017.
    [6] PLUMMER P, TOBIAS C, CADY D. Nitrogen reduction pathways in estuarine sediments:Influences of organic carbon and sulfide[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(10):1958-1972. doi:  10.1002/2015JG003057
    [7] MAHMOOD Q, ZHENG P, CAI J, et al. Anoxic sulfide biooxidation using nitrite as electron acceptor[J]. Journal of Hazardous Materials, 2007, 147(1/2):249-256.
    [8] AN S, GARDNER W S. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas[J]. Marine Ecology Progress Series, 2002, 237:41-50. doi:  10.3354/meps237041
    [9] JUNCHER J C, JACOBSEN O S, ELBERLING B, et al. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment[J]. Environmental Science & Technology, 2009, 43(13):4851-4857. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=248fdead0756cc28da8c5185da53a027
    [10] SHAO M, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:Diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042. doi:  10.1007/s00253-010-2847-1
    [11] DAPENA-MORA A, FERNÁNDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007, 40(4):859-865. doi:  10.1016/j.enzmictec.2006.06.018
    [12] 邓旭亮, 王爱杰, 荣丽丽, 等.硫自养反硝化技术研究现状与发展趋势[J].工业水处理, 2008(3):13-16. doi:  10.3969/j.issn.1005-829X.2008.03.004
    [13] YANG X, HUANG S, WU Q. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils and Sediments, 2012, 12(9):1435-1444. doi:  10.1007/s11368-012-0542-9
    [14] HAAIJER S C M, LAMERS L P M, SMOLDERS A J P, et al. Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands[J]. Geomicrobiology Journal, 2007, 24(5):391-401. doi:  10.1080/01490450701436489
    [15] HAYAKAWA A, HATAKEYAMA M, ASANO R, et al. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem[J]. Journal of Geophysical Research Biogeosciences, 2013, 118(2):639-649. doi:  10.1002/jgrg.20060
    [16] 张梦绯.生态修复技术在治理城市黑臭河流的应用[J].污染防治术, 2017, 30(5):59-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wrfzjs201705017
    [17] 李文超, 王琦, 石寒松, 等.城市黑臭河道中硫、铁自养反硝化微生物研究[J].广东化工, 2017, 44(4):77-78. doi:  10.3969/j.issn.1007-1865.2017.04.033
    [18] 程庆霖, 何岩, 黄民生, 等.城市黑臭河道治理方法的研究进展[J].上海化工, 2011, 36(2):25-31. doi:  10.3969/j.issn.1004-017X.2011.02.007
    [19] 李艳梅.硫自养反硝化细菌脱氮除硫性能研究[D].辽宁大连: 大连理工大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10141-1012394914.htm
    [20] SASS H, RAMAMOORTHY S, YARWOOD C, et al. Desulfovibrio idahonensis sp. nov., sulfate-reducing bacteria isolated from a metal (loid)-contaminated freshwater sediment[J]. International Journal of Systematic and Evolutionary Microbiology, 2009, 59(9):2208-2214. doi:  10.1099/ijs.0.016709-0
    [21] HALLER L, TONOLLA M, ZOPFI J, et al. Composition of bacterial and archaeal communities in freshwater sediments with different contamination levels (Lake Geneva, Switzerland)[J]. Water Research, 2011, 45(3):1213-1228. doi:  10.1016/j.watres.2010.11.018
    [22] MEYER B, KUEVER J. Molecular analysis of the distribution and phylogeny of dissimilatory adenosine-5'-phosphosulfate reductase-encoding genes (aprBA) among sulfur-oxidizing prokaryotes[J]. Microbiology, 2007, 153(10):3478-3498. doi:  10.1099/mic.0.2007/008250-0
    [23] MEYER B, KUEVER J. Molecular Analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene[J]. Applied and Environmental Microbiology, 2007, 73(23):7664-7679. doi:  10.1128/AEM.01272-07
    [24] MEYER B, KUEVER J. Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5'-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes-origin and evolution of the dissimilatory sulfate-reduction pathway[J]. Microbiology, 2007, 153(7):2026-2044. doi:  10.1099/mic.0.2006/003152-0
    [25] PHILIPPOT L. Denitrifying genes in bacterial and Archaeal genomes[J]. B Biochimica et Biophysica Acta, 2002, 1577(3):355-376. doi:  10.1016/S0167-4781(02)00420-7
    [26] 孙韶玲.水体黑臭演化过程及挥发性硫化物的产生机制初步研究[D].山东烟台: 中国科学院烟台海岸带研究所, 2017. http://cdmd.cnki.com.cn/Article/CDMD-80180-1017811411.htm
    [27] YE W J, LIU X L, LIN S Q, et al. The vertical distribution of bacterial andarchaeal communities in the water and sediment of LakeTaihu[J]. FEMS Microbiology Ecology, 2009, 70:263-276. doi:  10.1111/fem.2009.70.issue-2
    [28] PURCELL A M, MIKUCKI J A, ACHBERGER A M, et al. Microbial sulfur transformations in sediments from Subglacial Lake Whillans[J]. Frontiers in Microbiology, 2014, 5(594):1-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004602450
    [29] CARDOSO R B, SIERRA-ALVAREZ R, ROWLETTE P, et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6):1148-1157. doi:  10.1002/(ISSN)1097-0290
    [30] FLANAGAN D A, GREGORY L G, CARTER J P, et al. Detection of genes for periplasmic nitrate reductase in nitrate respiring bacteria and in community DNA[J]. FEMS Microbiology Letter, 1999, 177(2):263-270. doi:  10.1111/fml.1999.177.issue-2
    [31] ANGELONI N L, JANKOWSKI K J, TUCHMAN N C, et al. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland[J]. FEMS Microbiology Letters, 2006, 263(1):86-92. doi:  10.1111/fml.2006.263.issue-1
    [32] BRAKER G, TIEDJE J M. Nitric oxide reductase (norB) genes from pure cultures and environmental samples[J]. Applied and Environmental Microbiology, 2003, 69(6):3476-3483. doi:  10.1128/AEM.69.6.3476-3483.2003
    [33] ANGELONI N L, JANKOWSKI K J, TUCHMAN N C, et al. Effects of an invasive cattail species (Typha x glauca) on sediment nitrogen and microbial community composition in a freshwater wetland[J]. FEMS Microbiology Letters, 2006, 263(1):86-92. doi:  10.1111/fml.2006.263.issue-1
    [34] BIDERRE-PETIT C, BOUCHER D, KUEVER J, et al. Identification of sulfur-cycle prokaryotes in a low-sulfate lake (Lake Pavin) using aprA and 16S rRNA gene markers[J]. Microbial Ecology, 2011, 61(2):313-327. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23ab3c66dce422eeccf0502013774f0e
    [35] WATANABE T, KOJIMA H, FUKUI M. Identity of major sulfur-cycle prokaryotes in freshwater lake ecosystems revealed by a comprehensive phylogenetic study of the dissimilatory adenylylsulfate reductase[J]. Scientific Reports, 2016, 6(1):1-9. doi:  10.1038/s41598-016-0001-8
    [36] WATANABE T, KOJIMA H, TAKANO Y, et al. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene[J]. Systematic and Applied Microbiology, 2013, 36(6):436-443. doi:  10.1016/j.syapm.2013.04.009
    [37] KOJIMA H, FUKUI M. Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake[J]. I International Journal of Systematic and Evolutionary Microbiology, 2010, 60(12):2862-2866. doi:  10.1099/ijs.0.016980-0
    [38] SHAO M, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:diversity, biochemistry, and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042. doi:  10.1007/s00253-010-2847-1
    [39] KOJIMA H, WATANABE T, IWATA T, et al. Identification of major planktonic sulfur oxidizers in stratified freshwater Lake[J]. Plos One, 2014, 9(4):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004478900
    [40] BISOGNI J J, DRISCOLL C T. Denitrification Using Thiosulfate and Sulfide[J]. J Env Eng Div, 1997, 103(4):593-604 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022301096/
    [41] RIOS-DEL TORO E E, CERVANTES F J. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments[J]. Biodegradation, 2016, 27(2/3):107-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fb044c629d316bb7359954475dec9a3c
    [42] REYES-AVILLA J, RAZO-FLORE E, GOMEZ J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J]. Water Research, 2004, 38(14/15):3313-3321.
    [43] 王爱杰, 杜大仲, 任南琪.脱氮硫杆菌在废水脱硫、脱氮处理工艺中的应用[J].哈尔滨工业大学学报, 2004, 36(4):423-425. doi:  10.3321/j.issn:0367-6234.2004.04.003
    [44] ZHANG S Y, ZHOU Q H, XU D, et al. Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake[J]. Journal of Environmental Sciences, 2010, 22(2):218-224. doi:  10.1016/S1001-0742(09)60096-6
    [45] 李志洪.曝气扰动模式对黑臭河道底泥内源营养盐行为的影响作用及氮转化功能菌群响应规律研究[D].上海: 华东师范大学, 2015: 8-14. http://cdmd.cnki.com.cn/Article/CDMD-10269-1015339420.htm
  • 加载中
图(4) / 表(6)
计量
  • 文章访问数:  111
  • HTML全文浏览量:  100
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-07
  • 刊出日期:  2019-07-25

目录

    /

    返回文章
    返回