中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国主要潮间带沉积物中磷的含量、形态及释放

陈杰 王东启 李杨杰 俞琳 陈振楼 许世远

陈杰, 王东启, 李杨杰, 俞琳, 陈振楼, 许世远. 我国主要潮间带沉积物中磷的含量、形态及释放[J]. 华东师范大学学报(自然科学版), 2019, (4): 188-201. doi: 10.3969/j.issn.1000-5641.2019.04.018
引用本文: 陈杰, 王东启, 李杨杰, 俞琳, 陈振楼, 许世远. 我国主要潮间带沉积物中磷的含量、形态及释放[J]. 华东师范大学学报(自然科学版), 2019, (4): 188-201. doi: 10.3969/j.issn.1000-5641.2019.04.018
CHEN Jie, WANG Dong-qi, LI Yang-jie, YU Lin, CHEN Zhen-Lou, XU Shi-yuan. Phosphorus content, fractionation, and desorption status in the sediments of major Chinese tidal flats[J]. Journal of East China Normal University (Natural Sciences), 2019, (4): 188-201. doi: 10.3969/j.issn.1000-5641.2019.04.018
Citation: CHEN Jie, WANG Dong-qi, LI Yang-jie, YU Lin, CHEN Zhen-Lou, XU Shi-yuan. Phosphorus content, fractionation, and desorption status in the sediments of major Chinese tidal flats[J]. Journal of East China Normal University (Natural Sciences), 2019, (4): 188-201. doi: 10.3969/j.issn.1000-5641.2019.04.018

我国主要潮间带沉积物中磷的含量、形态及释放

doi: 10.3969/j.issn.1000-5641.2019.04.018
基金项目: 

国家自然科学基金 41473094

国家自然科学基金 41671467

科技部基础工作专项 2014FY210600

详细信息
    作者简介:

    陈杰, 男, 博士研究生, 研究方向为环境地学.E-mail:cj872577@hotmail.com

    通讯作者:

    王东启, 男, 教授, 博士生导师, 研究方向为环境地学.E-mail:dqwang@geo.ecnu.edu.cn

  • 中图分类号: P76

Phosphorus content, fractionation, and desorption status in the sediments of major Chinese tidal flats

  • 摘要: 本研究分析了我国12个潮间带表层及柱状样的总磷(TP)含量,发现浙江慈溪以北样品,辽宁辽河口表层样(0.046%±0.013%)及柱样(0.047%±0.015%)和山东青岛的表层样(0.047%±0.009%)及柱样(0.055%±0.008%)为低值区,其余天津汉沽、东营黄河口、江苏盐城、上海崇明东滩和浙江慈溪等北部5地区TP均值在0.063%~0.074%,为沿海12个潮间带中的高值区.慈溪以南,除厦门九龙江口和珠江的表层样和柱样高外(0.051%~0.070%),福州闽江口、广西英罗湾和海南东寨港较低(0.019%~0.041%).北部滩地高值区与沉积物来源以高通量的河流悬浮质输送有关.磷酸钙盐(Ca-P)的含量高值点也出现在北部5地区(4.16~9.56 μmol g-1).本研究柱样的铁结合态无机磷酸盐(Fe-P)含量低于表层样.Fe-P的高值点位于汉沽、青岛和九龙江口的表层样.通过两次连续和非连续加水培养,发现连续培养中,同一区域TP的释放速率有增有降,九龙江口(0.927±0.312μmol kg-1h-1)释放率远高于其他区域.非连续培养,除了辽河口,其他11个区域TP释放速率显著增加(P < 0.01),汉沽释放速率(1.437±0.325 μmol kg-1h-1)最高.
  • 图  1  个采样点分布图

    Fig.  1  The 12 sampling sites of the study

    图  2  12个采样点柱样的TP (%)分布

    Fig.  2  Vertical profiles of TP (%) at the 12 sampling sites

    图  3  表层样和柱样的TP(%)箱型图

    注: 尾字母S表示为表层样, C为柱样, 图 4

    Fig.  3  Box & Whisker Charts of TP concentration at the 12 sites

    图  4  12采样区表层样和柱样P的形态

    Fig.  4  P fractionation results in the surficial and column samples from the 12 sites studied

    图  5  柱样P的形态分布

    Fig.  5  Profiles of P fractionation in column samples

    图  6  表层沉积物TP的自源释放速率

    注: A1, B1分别为6月和8月连续加水培养; A2, B2为6月和8月非连续培养. 1-10或1-9为历次培养

    Fig.  6  Self-release velocity of TP in the surficial samples

    表  1  12个潮间带表层样的P的释放速率(±SD)

    采样区 6月培养释放速率/ ($\mu $mol kg$^{-1}$ h$^{-1})$ 8月培养释放速率/ ($\mu $mol kg$^{-1}$ h$^{-1})$
    值域(1-4) 均值(1-4) 值域(5-10) 均值(5-10) 值域(1-4) 均值(1-4) 值域(5-9) 均值(5-9)
    LH 0.007-0.981 0.542±0.251 0.379-0.901 0.692±0.145 0.291-0.687 0.469±0.132 0.557-1.140 0.842±0.180
    HG 0.229-1.401 0.692±0.358 0.418-2.591 1.056±0.632 0.433-1.454 0.760±0.262 0.988-2.039 1.437±0.325
    DY 0.146-1.031 0.437±0.227 0.154-0.821 0.437±0.174 0.116-1.343 0.564±0.400 0.157-0.854 0.558±0.237
    QD 0.197-1.400 0.632±0.332 0.196-1.584 0.776±0.338 0.349-1.125 0.645±0.230 0.837-1.370 1.058±0.172
    YC 0.156-0.729 0.306±0.157 0.120-0.800 0.350±0.161 0.215-0.909 0.416±0.204 0.319-0.723 0.554±0.128
    DT 0.122-1.242 0.367±0.273 0.101-0.652 0.301±0.148 0.198-1.053 0.542±0.290 0.154-1.400 0.692±0.373
    CX 0.182-0.846 0.394±0.222 0.197-0.780 0.422±0.168 0.262-0.949 0.454±0.223 0.328-0.610 0.483±0.008
    FZ 0.009-0.487 0.233±0.120 0.117-0.517 0.300±0.106 0.136-0.747 0.436±0.205 0.121-0.551 0.310±0.116
    JL 0.493-1.398 0.877±0.256 0.354-1.440 0.864±0.293 0.501-1.453 0.927±0.312 0.365-1.794 1.133±0.508
    ZJ 0.182-0.970 0.467±0.194 0.274-1.211 0.532±0.218 0.229-0.575 0.376±0.109 0.216-0.592 0.435±0.110
    YL 0.246-2.446 0.845±0.654 0.171-1.643 0.727±0.454 0.237-0.708 0.428±0.138 0.096-0.771 0.476±0.183
    DZ 0.097-0.824 0.293±0.173 0.034-0.638 0.278±0.135 0.132-0.520 0.290±0.123 0.063-0.481 0.297±0.140
    注: 1-4为连续加水培养, 5-10和5-9为非连续培养
    下载: 导出CSV

    表  2  表层样品中粘土矿物的含量†

    Tab.  2  Average clay mineral content from surficial samples

    伊利石含量/% 蒙脱石含量/% 高岭石含量/% 绿泥石含量/% 蒙脱石/伊利石‡
    1.LH 58.9 14.5 13.9 12.7 0.246
    2.HG 59.1 8.4 15.3 17.2 0.142
    3.DY 55.3 8.3 16.1 20.3 0.150
    4.QD 61.0 10.8 16.0 12.2 0.177
    5.YC 58.3 7.4 15.2 19.1 0.127
    6.DT 56.1 4.6 18.4 20.9 0.082
    7.CX 58.8 5.1 16.3 19.8 0.087
    8.FZ 32.8 2.2 37.9 27.1 0.067
    9.JL 32.0 3.5 40.0 24.5 0.109
    10.ZJ 39.5 1.3 38.4 20.8 0.033
    11.DZ 32.6 6.4 38.7 22.3 0.196
    12.YL 15.3 2.0 61.3 21.4 0.131
    注: †青岛海洋地质研究所提供(2016), ‡蒙脱石与伊利石的比值
    下载: 导出CSV

    表  3  模拟实验中沉积物TP的平均释放通量

    Tab.  3  Average flux of TP during the simulation experiment

    $\mu $mol $\cdot$ m$^{-2}\cdot$ d$^{-1}$
    样点名 n1-1-4 n1-5-10 n2-1-4 n2-5-9
    LH 97.6 124.6 84.4 151.6
    HG 124.6 190.1 136.8 258.7
    DY 78.7 78.7 101.5 100.4
    QD 113.8 139.7 116.1 190.4
    YC 55.1 63.0 74.9 99.7
    DT 66.1 54.2 97.6 124.6
    CX 70.9 76.0 81.7 86.9
    FZ 41.9 54.0 78.5 55.8
    JL 157.9 155.5 166.9 203.9
    ZJ 84.1 95.8 67.7 78.3
    YL 152.1 130.9 77.0 85.7
    DZ 52.7 50.0 52.2 53.5
    注: n1-1-4, n1-5-10分别表示6月连续加水和非连续加水培养; n2-1-4, n2-5-9则为8月连续加水和非连续加水培养
    下载: 导出CSV
  • [1] PAYTAN A, MCLAUGHLIN K. The oceanic phosphorus Cycle[J]. Chemical Reviews, 2007, 107(2):563-576. doi:  10.1021/cr0503613
    [2] RUTTENBERG K C. The Global phosphorus cycle[M]//Holland H D, TUREKIAN K K. Treatise on Geochemistry (Second Edition). Oxford: Elsevier, 2014: 499-558.
    [3] SUNDARESHWAR P V, MORRIS J T. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient[J]. Limnology and Oceanography, 1999, 44(7):1693-1701. doi:  10.4319/lo.1999.44.7.1693
    [4] TOBIAS C R, MACKO S A, ANDERSON I C, et al. Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh:A combined groundwater tracer and in situ isotope enrichment study[J]. Limnology and Oceanography, 2001, 46(8):1977-1989. doi:  10.4319/lo.2001.46.8.1977
    [5] ZHOU J, WU Y, KANG Q, et al. Spatial variations of carbon, nitrogen, phosphorous and sulphur in the salt marsh sediments of the Yangtze Estuary in China[J]. Estuarine Coastal and Shelf Science, 2007, 71(1/2):47-59.
    [6] TOBIAS C R, NEUBAUER S C. Salt marsh biogeochemistry-an overview[M]//PERILLO G M E, WOLANSKI E, CAHOON D R, et al. Coastal Wetlands: An Integrated Ecosystem Approach. Amsterdam: Elsevier, 2009: 445-492.
    [7] TAMBURINI F, FOLLMI K B. Phosphorus burial in the ocean over glacial-interglacial time scales[J]. Biogeosciences, 2008, 6(4):501-513. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_d11f81c4bec284f84485cd4f31634de8
    [8] BECK M A, SANCHEZ P A. Soil phosphorus fraction dynamics during 18 years of cultivation on a typic paleudult[J]. Soil Science Society of America Journal, 1994, 58(5):1424-1431. doi:  10.2136/sssaj1994.03615995005800050021x
    [9] NAIR V D, REDDY K R. Phosphorus sorption and desorption in wetland soils[M]//DELAUNE R D, REDDY K R, RICHARDSON C J, et al. Methods in Biogeochemistry of Wetlands. Madison: SSSA, 2013: 667-681.
    [10] BRADFORD M E, PETERS R H. The relationship between chemically analysed phosphorus fractions and bioavailable phosphorus[J]. Limnology and Oceanography, 1987, 32(5):1124-1137. doi:  10.4319/lo.1987.32.5.1124
    [11] WILLIAMS J D H, JAQUET J, THOMAS R L. Forms of Phosphorus in the Surficial Sediments of Lake Erie[J]. Journal of the Fisheries Board of Canada, 1976, 33(3):413-429. doi:  10.1139/f76-063
    [12] SONZOGNI W C, CHAPRA S C, ARMSTRONG D E, et al. Bioavailability of Phosphorus Inputs to Lakes1[J]. Journal of Environmental Quality, 1982, 11(4):555-563.
    [13] 侯立军, 陆健健, 刘敏, 等.长江口沙洲表层沉积物磷的赋存形态及生物有效性[J].环境科学学报, 2006, 26(3):488-494. doi:  10.3321/j.issn:0253-2468.2006.03.022
    [14] SMITH E A, MAYFIELD C I, WONG P T S. Effects of phosphorus from apatite on development of freshwater communities[J]. Journal of the Fisheries Board of Canada, 1977, 34(12):2405-2409. doi:  10.1139/f77-323
    [15] SMITH E A. Naturally occurring apatite as a source of orthophosphate for growth of bacteria and algae[J]. Microbial Ecology, 1977, 4(2):105-117. doi:  10.1007/BF02014281
    [16] SONZOGNI W C, LARSEN D P, MALUEG K W, ET AL. Use of large submerged chambers to measure sediment-water interactions[J]. Water Research, 1977, 11(5):461-464. doi:  10.1016/0043-1354(77)90088-4
    [17] YAMADA H, KAYAMA M. Distribution and dissolution of several forms of phosphorus in coastal marine sediments[J]. Oceanologica Acta, 1987, 10(3):311-321.
    [18] HOLDREN G C, ARMSTRONG D E. Factors affecting phosphorus release from intact lake sediment cores[J]. Environmental Science & Technology, 1980, 14(1):79-87. doi:  10.1021-es60161a014/
    [19] NURNBERG G K. Prediction of Phosphorus Release Rates from Total and Reductant-Soluble Phosphorus in Anoxic Lake Sediments[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1988, 45(3):453-462. doi:  10.1139/f88-054
    [20] KIM L H, CHOI E, STENSTROM M K. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments[J]. Chemosphere, 2003, 50(1):53-61. doi:  10.1016/S0045-6535(02)00310-7
    [21] LAI D Y, LAM K C. Phosphorus sorption by sediments in a subtropical constructed wetland receiving stormwater runoff[J]. Ecological Engineering, 2009, 35(5):735-743. doi:  10.1016/j.ecoleng.2008.11.009
    [22] DEJONGE V N, ENGELKES M M, BAKKER J F. Bioavailability of Phosphorus in Sediments of the Western Dutch Wadden Sea[J]. Hydrobiologia, 1993, 253(1):151-163. doi:  10.1007-BF00050735/
    [23] 中华人民共和国环境保护部. 2014年近岸海域环境质量公报[R].北京: 环保部, 2015.
    [24] 中华人民共和国环境保护部. 2015年近岸海域环境质量公报[R].北京: 环保部, 2016.
    [25] 过锋, 赵俊, 陈聚法, 等.胶州湾贝类养殖区氮、磷污染现状及动态变化[J].渔业科学进展, 2012, 33(5):116-122. doi:  10.3969/j.issn.1000-7075.2012.05.018
    [26] CUI J, LIU C, LI Z, et al. Long-term changes in topsoil chemical properties under centuries of cultivation after reclamation of coastal wetlands in the Yangtze Estuary, China[J]. Soil and Tillage Research, 2012, 123:50-60. doi:  10.1016/j.still.2012.03.009
    [27] MA Z, MELVILLE D S, LIU J, et al. Rethinking China's new great wall[J]. Science, 2014, 346:912-914. doi:  10.1126/science.1257258
    [28] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 1999.
    [29] KUO S. Phosphorus[M]//SPARKS D L, PAGE A L, HELMKE P A, et al. Methods of soil analysis. Part 3 Chemical Methods. Madison: ASA and SSSA, 1996: 881-884.
    [30] KESTER D R, DUEDALL I W, CONNORS D N, et al. Preparation of artificial seawater[J]. Limnology and oceanography, 1967, 12(1):176-179. doi:  10.4319/lo.1967.12.1.0176
    [31] 苏纪兰, 袁业立.中国近海水文[M].北京:海洋出版社, 2005.
    [32] 国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社, 2002:243-247.
    [33] MACKENZIE F T, VER L M, SABINE C L, et, al. C, N, P, S Global biogeochemical cycles and modelling of global change[M]//WOLLAST R, MACKENZIE F T, CHOU L. Interactions of C, N, P and S Biogeochemical Cycles and Global Change. Berlin: Springer-Verlag, 1993: 1-61.
    [34] RICHEY J E. The phosphorus cycle[M]//BOLIN B, COOK R B. The Major Biogeochemical Cycles and Their Interactions. Chichester: John Wiley and Sons, 1983: 51-56.
    [35] MEYBECK M. Carbon, nitrogen, and phosphorus transport by world rivers[J]. American Journal of Science, 1982, 282:401-450. doi:  10.2475/ajs.282.4.401
    [36] LERMAN A, MACKENZIE F T, GARRELS R M. Modelling of geochemical cycles:Phosphorus as an example[J]. Geological Society of America Memoir, 1975, 142:205-217.
    [37] WANG Y. The Mudflat System of China[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1983, 40(s1):160-171. doi:  10.1139/f83-278
    [38] MILLIMAN J D, QIN Y S, REN M E, et al. Man's influence on the erosion and transport of sediment by Asian rivers:The Yellow River (Huanghe) example[J]. The Journal of Geology, 1987, 95(6):751-762. doi:  10.1086/629175
    [39] 李延, 朱校斌, 胡兆彬.渤海湾底质间隙水的地球化学特征及其污染状况[J].海洋与湖沼, 1982, 13(5):414-423. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198205003.htm
    [40] 秦延文, 孟伟, 郑丙辉, 等.渤海湾水环境氮、磷营养盐分布特点[J].海洋学报, 2005, 27(2):172-176. doi:  10.3321/j.issn:0253-4193.2005.02.023
    [41] 尹翠玲, 张秋丰, 阚文静, 等.天津近岸海域营养盐变化特征及富营养化概况分析[J].天津科技大学学报, 2015, 30(1):56-61. http://d.old.wanfangdata.com.cn/Periodical/tjqgyxyxb201501011
    [42] 杨作升.黄河、长江、珠江沉积物中粘土的矿物组合、化学特征及其与物源区气候环境的关系[J].海洋与湖沼, 1988, 19(4):336-346. http://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ198804005.htm
    [43] 任美锷.江苏省海岸带与海涂资源综合调查报告[R].北京: 海洋出版社, 1986.
    [44] LIU Z, WEI H, LIU G, et al. Simulation of water exchange in Jiaozhou Bay by average residence time approach[J]. Estuarine Coastal and Shelf Science, 2004, 61(1):25-35. doi:  10.1016/j.ecss.2004.04.009
    [45] 山东省科学技术委员会.山东省海岸带与海涂资源综合调查报告[R].北京: 中国科学技术出版社, 1990.
    [46] 戴纪翠, 宋金明, 李学刚, 等.胶州湾沉积物中的磷及其环境指示意义[J].环境科学, 2006, 27(10):1953-1962. doi:  10.3321/j.issn:0250-3301.2006.10.006
    [47] 李学刚, 宋金明, 李宁, 等.胶州湾沉积物中氮与磷的来源及其生物地球化学特征[J].海洋与湖沼, 2005, 36(6):562-571. doi:  10.3321/j.issn:0029-814X.2005.06.011
    [48] 王晓宇, 杨红生, 孙金生, 等.天津近岸海域氮磷营养盐分布及富营养化评价[J].海洋科学, 2011, 35(9):56-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hykx201109010
    [49] 岳维忠, 黄小平, 孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼, 2007, 38(2):111-117. doi:  10.3321/j.issn:0029-814X.2007.02.003
    [50] VAZQUEZ P, HOLGUIN G, PUENTE M E, et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon[J]. Biology and Fertility of Soils, 2000, 30(5/6):460-468. https://www.cabdirect.org/cabdirect/abstract/20001910251
    [51] FOX T R, COMERFORD N B, MCFEE W W, et al. Phosphorus and aluminum release from a spodic horizon mediated by organic acids[J]. Soil Science Society of America Journal, 1990, 54(6):1763-1767. doi:  10.2136/sssaj1990.03615995005400060043x
    [52] HESSE P R. Phosphorus fixation in mangrove swamp muds[J]. Nature, 1962, 193(4812):295-296. https://www.nature.com/articles/193295b0
    [53] FABRY V J, SEIBEL B A, FEELY R A, et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. Trends in Ecology & Evolution, 2013, 28(3):178-186. https://academic.oup.com/icesjms/article/65/3/414/789605
    [54] ORR J C, FABRY V J, AUMONT O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437(7059):681-686. doi:  10.1038/nature04095
    [55] CRAFT C B, BROOME S W, SENECA E D. Nitrogen, phosphorus and organic carbon pools in natural and transplanted marsh soils[J]. Estuaries, 1988, 11(4):272-280. doi:  10.2307/1352014
    [56] SUNDARESHWAR P V, MORRIS J T. Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient[J]. Limnology and Oceanography, 1999, 44(7):1693-1701. doi:  10.4319/lo.1999.44.7.1693
    [57] CHILDERS D L. Fifteen years of marsh flumes: A review of marsh-water core interactions in southeastern USA estuaries[M]//MITSCH W J. Global wetlands. Amsterdam: Elsevier Science, 1994: 277-293.
    [58] LILLEBO A I, NETO J M, FLINDT M, et al. Phosphorous dynamics in a temperate intertidal estuary[J]. Estuarine Coastal and Shelf Science, 2004, 61(1):101-109. doi:  10.1016/j.ecss.2004.04.007
    [59] 陈水土, 阮五崎.九龙江口、厦门西海域磷的生物地球化学研究:Ⅱ表层沉积物中磷形态的分布及在再悬浮过程中的转化[J].海洋学报, 1993, 15(6):47-54.
    [60] 傅瑞标, 沈焕庭.长江河口淡水端溶解态无机氮磷的通量[J].海洋学报, 2002, 24(4):34-43. doi:  10.3321/j.issn:0253-4193.2002.04.004
    [61] 刘成, 王兆印, 何耘, 等.上海污水排放口水域水质和底质分析[J].中国水利水电科学研究院学报, 2003, 1(4):275-280. doi:  10.3969/j.issn.1672-3031.2003.04.006
    [62] 马晓波, 尹则高, 孙寓姣, 等.大沽河河口区氮磷营养盐输移转化行为研究[J].中国海洋大学学报(自然科学版)自然科学版, 2015, 45(11):100-108. http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb201511014
    [63] 孙优善, 孙鹤鲲, 王学昌, 等.胶州湾近岸海域水质状况调查与评价[J].海洋湖沼通报, 2007(4):93-97. doi:  10.3969/j.issn.1003-6482.2007.04.014
    [64] 陈晨, 杨桂朋, 高先池, 等.胶州湾微表层和次表层海水中营养盐的分布特征及富营养化研究[J].环境科学学报, 2012, 32(8):1856-1865. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201208010
    [65] LILLEBØ A I, NETO J M, FLINDT M, et al. Phosphorous dynamics in a temperate intertidal estuary[J]. Estuarine Coastal and Shelf Science, 2004, 61(1):101-109. doi:  10.1016/j.ecss.2004.04.007
    [66] LILLEBØ A I, COELHO J P, FLINDT M R, et al. Spartina maritima, influence on the dynamics of the phosphorus sedimentary cycle in a warm temperate estuary (Mondego estuary, Portugal)[J]. Hydrobiologia, 2007, 587(1):195-204. doi:  10.1007/s10750-007-0679-5
    [67] 国家海洋信息中心. 2014潮汐表[M].北京:海洋出版社, 2013.
    [68] SØNDERGAARD, MARTIN, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506-509(1-3):135-145. doi:  10.1023-B-HYDR.0000008611.12704.dd/
    [69] NOAA National Centers for Environmental information. Global summary of the year[EB/OL]. (2015-09-20)[2018-05-25]. https://www.ncdc.noaa.gov/cdo-web.
    [70] NURNBERG G K. Assessing internal phosphorus load:Problems to be solved[J]. Lake and Reservoir Management, 2009, 25(4):419-432. doi:  10.1080/00357520903458848
    [71] SPEARS B M, CARVALHO L, PERKINS R G, et al. Long-term variation and regulation of internal phosphorus loading in Loch Leven[J]. Hydrobiologia, 2012, 681(1):23-33. doi:  10.1007/s10750-011-0921-z
    [72] STEINMAN A, CHU X, OGDAHL M. Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan[J]. Aquatic Ecology, 2009, 43(1):1-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bd0888444d2e64827da1b3c2c98104be
    [73] FEUILLETGIRARD M, GOULEAU D, BLANCHARD G F, et al. Nutrient fluxes on an intertidal mudflat in Marennes-Oleron Bay, and influence of the emersion period[J]. Aquatic Living Resources, 1997, 10(1):49-58. doi:  10.1051/alr:1997005
    [74] ALONGI D M. Coastal Ecosystem Processes[M]. Florida, Boca Raton:CRC Press, 1997.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  110
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-20
  • 刊出日期:  2019-07-25

目录

    /

    返回文章
    返回