中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

知识追踪综述

刘恒宇 张天成 武培文 于戈

刘恒宇, 张天成, 武培文, 于戈. 知识追踪综述[J]. 华东师范大学学报(自然科学版), 2019, (5): 1-15. doi: 10.3969/j.issn.1000-5641.2019.05.001
引用本文: 刘恒宇, 张天成, 武培文, 于戈. 知识追踪综述[J]. 华东师范大学学报(自然科学版), 2019, (5): 1-15. doi: 10.3969/j.issn.1000-5641.2019.05.001
LIU Heng-yu, ZHANG Tian-cheng, WU Pei-wen, YU Ge. A review of knowledge tracking[J]. Journal of East China Normal University (Natural Sciences), 2019, (5): 1-15. doi: 10.3969/j.issn.1000-5641.2019.05.001
Citation: LIU Heng-yu, ZHANG Tian-cheng, WU Pei-wen, YU Ge. A review of knowledge tracking[J]. Journal of East China Normal University (Natural Sciences), 2019, (5): 1-15. doi: 10.3969/j.issn.1000-5641.2019.05.001

知识追踪综述

doi: 10.3969/j.issn.1000-5641.2019.05.001
基金项目: 

国家自然科学基金 U1811261

国家自然科学基金 61602103

详细信息
    作者简介:

    刘恒宇, 男, 博士研究生, 研究方向为智慧教育.E-mail:l372511387@163.com

    通讯作者:

    张天成, 男, 副教授, 研究方向为大数据分析与挖掘、时空数据管理、智慧教育.E-mail:tczhang@mail.neu.edu.cn

  • 中图分类号: TP301.6

A review of knowledge tracking

  • 摘要: 在教育领域中,科学地、有针对性地对学生的知识状态进行有效追踪具有十分重要的意义.根据学生的历史学习轨迹,可以对学生与习题的交互过程进行建模.在此基础上,能够自动地对学生各个阶段的知识状态进行追踪,进而预测学生表现,实现个性化导学和自适应学习.首先,对知识追踪及其应用背景进行介绍,总结知识追踪所涉及的教育学与数据挖掘理论;其次,总结基于概率图、矩阵分解、深度学习的知识追踪研究现状,并根据方法的不同特点进行更为细致的分类;最后对目前的知识追踪技术进行分析比较,并对未来的研究方向进行展望.
  • 图  1  认知诊断简化过程

    Fig.  1  Simplified cognitive diagnosis process

    图  2  LSI模型中的学习风格

    Fig.  2  Learning style in LSI model

    图  3  实时反馈的用户交互建模

    Fig.  3  User interaction modeling with real-time feedback

    图  4  阶段性反馈的用户交互建模

    Fig.  4  User interaction modeling with phased feedback

    图  5  BKT概率图结构

    Fig.  5  BKT probability graph structure

    图  6  FuzzyCDF概率图结构

    Fig.  6  FuzzyCDF probability graph structure

    图  7  KPT模型框架

    Fig.  7  KPT model framework

    图  8  DKT模型框架

    Fig.  8  DKT model framework

    图  9  EERNN中的练习题嵌入

    Fig.  9  Exercises embedded in EERNN

    图  10  参数a对数值解的影响

    Fig.  10  EERNN model framework

    表  1  BKT模型参数表

    Tab.  1  BKT model parameter table

    参数 参数含义
    $P(L_0 )$ 学生未经过练习, 掌握知识点的概率
    $P(T)$ 学生经过练习后, 学会知识点的概率
    $P(S)$ 学生掌握了某项知识点, 做错的概率
    $P(G)$ 学生没掌握某项知识点, 做对的概率
    $K$ 知识节点(1表示掌握, 0表示未掌握)
    $Q$ 问题节点(1表示通过, 0表示未通过)
    下载: 导出CSV

    表  2  模型对比

    Tab.  2  Model comparison

    Model Q-matrix Multi-Skill Question Repeating Answer Question text time Multi-Knowledge Proficiency Response
    BKT $\checkmark$ $\times $ $\checkmark$ $\times $ $\checkmark$ $\checkmark$ $\checkmark$
    FuzzyCDF $\checkmark$ $\checkmark$ $\times $ $\times $ $\times $ $\checkmark$ $\checkmark$
    PMF $\times $ $\times $ $\times $ $\times $ $\times $ $\times $ $\checkmark$
    KPT $\checkmark$ $\checkmark$ $\times $ $\times $ $\checkmark$ $\checkmark$ $\checkmark$
    DKT $\times $ $\times $ $\checkmark$ $\times $ $\times $ $\times $ $\checkmark$
    EERNN $\times $ $\times $ $\checkmark$ $\checkmark$ $\times $ $\times $ $\checkmark$
    下载: 导出CSV
  • [1] YUDELSON M V, KOEDINGER K R, GORDON G J. Individualized Bayesian knowledge tracing models[C]//Artificial Intelligence in Education. Springer Berlin Heidelberg, 2013.
    [2] SCHUSTER M, PALIWAL K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11):2673-2681. doi:  10.1109/78.650093
    [3] PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//NIPS, 2015: 505-513.
    [4] DIBELLO L, ROUSSOS L, STOUT W. 31a review of cognitively diagnostic assessment and a summary of psychometric models[J]. Handbook of Statistics, 2006, 26(12):979-1030. http://www.sciencedirect.com/science/article/pii/S0169716106260310
    [5] EMBRETSON S E, REISE S P. Item response theory[M].[S.l.]:Psychology Press, 2013.
    [6] TORRE D L. DINA model and parameter estimation:A didactic[J]. Journal of Educational and Behavioral Statistics, 2008, 34(1):115-130. http://www.jstor.org/stable/40263519
    [7] WU R, LIU Q, LIU Y, et al. Cognitive modelling for predicting examinee performance[C]//International Conference on Artificial Intelligence. AAAI Press, 2015.
    [8] THAINGHE N, HORVATH T, SCHMIDTTHIEME L, et al. Factorization models for forecasting student performance[C]//Educational Data Mining, 2011: 11-20.
    [9] XIONG L, CHEN X, HUANG T K, et al. Temporal collaborative filtering with Bayesian probabilistic tensor factorization[C]//Proceedings of the 2010 SIAM International Conference on Data Mining, 2010: 211-222
    [10] SU Y, LIU Q, LIU Q, et al. Exercise-enhanced sequential modeling for student performance prediction[C]//AAAI, 2018: 2435-2443.
    [11] CHEN Y, LIU Q, HUANG Z, et al. Tracking knowledge proficiency of students with educational priors[C]//CIKM. ACM, 2017: 989-998.
    [12] KINGMA D, BA J. Adam: A method for stochastic optimization[C]//International Conference on Learning Representations, 2015.
    [13] SHI Y, PENG Z, WANG H. Modeling student learning styles in MOOCs[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2017: 979-988. http://cn.bing.com/academic/profile?id=3a439bfe9c5503cc9607936143dce1f1&encoded=0&v=paper_preview&mkt=zh-cn
    [14] GRAVES A, MOHAMED A, HINTON G E. Speech recognition with deep recurrent neural networks[C]//ICASSP. IEEE, 2013: 6645-6649. http://cn.bing.com/academic/profile?id=2218c8639beeaf1f08999a2daa3be152&encoded=0&v=paper_preview&mkt=zh-cn
    [15] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet Classification with Deep Convolutional Neural Networks[C]//NIPS. Curran Associates Inc, 2012.
    [16] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Advances in Neural Information Processing Systems, 2013.
    [17] HUANG Z, LIU Q, CHEN E, et al. Question difficulty prediction for reading problems in standard tests[C]//National Conference on Artificial Intelligence, 2017: 1352-1359.
    [18] ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//The Web Conference, ACM, 2017: 765-774.
    [19] CHEN P, LU Y, ZHENG V W, et al. Prerequisite-driven deep knowledge tracing[C]//IEEE Computer Society. ICDM, 2018: 39-48.
    [20] DE BAKER R S J, CORBETT A T, ALEVEN V. More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing[C]//Proceedings of the 9th international conference on Intelligent Tutoring Systems. Springer-Verlag, 1970.
    [21] PARDOS Z A, HEFFERNAN N T. KT-IDEM: Introducing item difficulty to the knowledge tracing model[C]//International Conference on User Modeling Adaptation and Personalization, 2011: 243-254.
    [22] YUDELSON M, KOEDINGER K R, GORDON G J, et al. Individualized Bayesian knowledge tracing models[C]//Artificial Intelligence in Education, 2013: 171-180.
    [23] MNIH A, SALAKHUTDINOV R. Probabilistic matrix factorization[C]//Neural Information Processing Systems, 2007: 1257-1264.
    [24] CORBETT A T, ANDERSON J R. Knowledge tracing:Modeling the acquisition of procedural knowledge[J]. User Modeling and User-Adapted Interaction, 1994, 4(4):253-278. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_cd4bd639ae6483239b8987a52bd8710a
    [25] PARDOS Z, HEFFERNAN N, RUIZ C, et al. The composition effect: Conjuntive or compensatory? an analysis of multi-skill math questions in ITS[C]//Educational Data Mining, 2008: 147-156.
    [26] HASTINGS W K. Monte Carlo Sampling Methods Using Markov Chains and Their Applications[J]. Biometrika, 1970, 57(1):97-109. doi:  10.1093/biomet/57.1.97
    [27] CAMILLI, G. Teacher's Corner:Origin of the scaling constant d=1.7 in item response theory[J]. Journal of Educational Statistics, 1994:19(3), 293-295. http://www.jstor.org/stable/1165298
    [28] RAJU N S, SLINDE J. ISSUES IN ITEM BANKING[J]. Journal of Educational Measurement, 1984, 21(4):415-417. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1111/j.1745-3984.1984.tb01037.x
    [29] TANG J, GAO H, HU X, et al. Exploiting homophily effect for trust prediction[C]//Proceedings of the sixth ACM international conference on Web search and data mining. ACM, 2013: 53-62.
    [30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780. doi:  10.1162/neco.1997.9.8.1735
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  191
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-29
  • 刊出日期:  2019-09-25

目录

    /

    返回文章
    返回