中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

城市共享单车的动态调度策略

谢青成 毛嘉莉 刘婷

谢青成, 毛嘉莉, 刘婷. 城市共享单车的动态调度策略[J]. 华东师范大学学报(自然科学版), 2019, (6): 88-102. doi: 10.3969/j.issn.1000-5641.2019.06.009
引用本文: 谢青成, 毛嘉莉, 刘婷. 城市共享单车的动态调度策略[J]. 华东师范大学学报(自然科学版), 2019, (6): 88-102. doi: 10.3969/j.issn.1000-5641.2019.06.009
XIE Qing-cheng, MAO Jia-li, LIU Ting. Dynamic scheduling strategy for bicycle-sharing in cities[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 88-102. doi: 10.3969/j.issn.1000-5641.2019.06.009
Citation: XIE Qing-cheng, MAO Jia-li, LIU Ting. Dynamic scheduling strategy for bicycle-sharing in cities[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 88-102. doi: 10.3969/j.issn.1000-5641.2019.06.009

城市共享单车的动态调度策略

doi: 10.3969/j.issn.1000-5641.2019.06.009
基金项目: 

国家自然科学基金 61702423

四川省教育厅重点基金项目 17ZA0381

西华师范大学国家培育项目 16C005

西华师范大学英才科研基金 17YC158

详细信息
    作者简介:

    谢青成, 男, 硕士研究生, 研究方向为基于位置的服务.E-mail:1061109117@qq.com

    通讯作者:

    毛嘉莉, 女, 副教授, 硕士生导师, 研究方向为基于位置的服务.E-mail:jlmao@dase.ecnu.edu.cn

  • 中图分类号: TP311

Dynamic scheduling strategy for bicycle-sharing in cities

  • 摘要: 为满足城市共享单车用户的用车需求,提高共享单车的使用效率,结合路况信息提出了一个两阶段的共享单车实时投放与调度框架:在离线建模阶段,基于历史的短程出租车轨迹数据聚类,使用区域提取技术(Regional Extraction Technique,RET)获取不同时段的城市热门用车区域、用车频次与行程结束后的热门停车区域及其停车频次;在线调度阶段,建立共享单车的实时调度优化模型(Real-time OptimizationModel,ROM),根据下一时段的热门用车区域,搜索当前时段内距离其较近的k近邻单车停车区域,并结合实时路况为调度车推荐前k条路况良好的行车线路.出租车轨迹数据集上的实验表明,所提的调度策略相较于传统的自行车调度策略具有较好的有效性.
  • 图  1  总体框架

    Fig.  1  Overall framework

    图  2  带权值的无向图

    Fig.  2  Undirected graph with weights

    图  3  带权值的邻接矩阵图

    Fig.  3  Adjacency matrix graph with weights

    图  4  用车频次预测误差MAE

    Fig.  4  Pick-up frequency prediction error MAE

    图  5  停车频次预测误差MAE

    Fig.  5  Drop-off frequency prediction error MAE

    图  6  ROM效率图

    Fig.  6  Efficiency of the ROM

    图  7  以$n_{4}$为例的示意图

    Fig.  7  Schematic diagram using $n_{4 }$ as an example

    图  8  实际路况可视化

    Fig.  8  Visualization of actual road conditions

    图  9  行车线路总里程对比图

    Fig.  9  Comparison of total mileage for routes

    图  10  行车总时长对比图

    Fig.  10  Comparison of driving time for routes

    表  1  结点符号含义

    Tab.  1  Node symbol definitions

    符号含义
    $P_{i}$.id出租车ID
    $P_{i}.s$出租车载客状态
    $P_{i}.t$出租车所处时间段
    $P_{i}$.lon经度坐标
    $P_{i}$.lat纬度坐标
    $P_{i}.v $出租车速度
    下载: 导出CSV
    算法1 RET based on DBSCAN
    输入: A list of point $D$={$p_{1}, p_{2}{, {\cdots}, p}_{n}$}, MinPts, $ r_{\rm spatio}$
    输出: $C$: Clustering result clusterList
    $C$ $\leftarrow $ 0, cluster_$i\leftarrow $1;
    Initialize $D$, TaxiID_i, $D_{s}^{\rm pick}$, $D_{s}^{\rm drop}$, C;
    1:     for each point $ p_{j}$ in $D$ do
    2:       if($ p_{i}$.id=TaxiID_i.id)do
    3:         for each point $ p_{j }$ in TaxiID_i do
    4:           if ($p_{i}$.time$ < p_{j}$.time)then
    5:              TaxiID_$i\leftarrow p_{j}=p_{i }\cup p_{j+1}=p_{j }$;
    6:          else if ($p_{i}$.time$\ge p_{j}$.time)then
    7:              TaxiID_$i\leftarrow p_{j+1}=p_{i}$;
    8:        else TaxiID_$i++\leftarrow p_{i }$;
    /*find short-distance taxi routes, record the drop-off and pick-up point*/
    9:    if($p_{m }$and $p_{n }$ is the pick-up and drop-off points of a trip)do
    10:           if(dist$\vert $$p_{m}, p_{n}$$\vert$$\le $3 km $\vert \vert $T$_{s}$.start$\le p_{n}$.time, $p_{m}$.time$\le T_{s}$.end)then
    11:             $D_{s}^{\rm pick}\leftarrow p_{n }$; $D_{s}^{\rm drop}\leftarrow p_{m}$;
    12:    for each point $ p_{e}$ in $D_{s}^{\rm pick}$, $D_{s}^{\rm drop}$do
    13:          While!$p_{e}$.isVisited=true do;
               /*find the Neighborhood points for $p_{e }$: Nr$_{\rm spatio}p_{e}$*/
    14:         if($\vert $ Nr$_{\rm spatio}p_{e}$$\vert $$\ge $MinPts)then
    15:           $p_{e}$.cluster_ID=cluster_$i$;
    16:           for each Neighborhood point $ p_{a}$ in Nr$_{\rm spatio}p_{e}$ do;
    17:           While!$p_{a}$.isVisited=true do;
      /*find the Neighborhood points for $p_{a}$ about $r_{\rm spatio}$: Nr$_{\rm spatio}p_{a}$ */
    18:           if($\vert $ Nr$_{\rm spatio}p_{a }\vert \ge $MinPts)then
    19:             Nr$_{\rm spatio}$pi$\leftarrow r_{\rm spatio} p_{i}\cup r_{\rm spatio} p_{a}$
    20:             if($p_{a}$.cluster_ID=0)then
    21:                $p_{a}$.cluster_ID=cluster_$i$;
    22:            cluster_$i$++;
    23:   resturn $C$;
    下载: 导出CSV

    表  2  出租车GPS数据格式

    Tab.  2  Format of taxi GPS data

    数据符号数据类型描述(样例)
    TaxiIDchar出租车标识(18834)
    Statuschar载客状态(1)空载状态(0)
    Timechar时间(2015-04-01 14:25:27)
    Longitudefloat经度值(121.441 895)
    Latitudefloat纬度值(31.206 928)
    Speedshort速度(0.0)
    Angleshort角度(228.0)
    下载: 导出CSV

    表  3  top-$k$停车区域数据表

    Tab.  3  Top-$k$ drop-off region data table

    线路长度排名区域编号线路长度/km停车比例/%
    1$g_5$0.520.70
    2$g_{40}$0.660.50
    3$g_{10}$1.11.10
    4$g_{20}$1.20.90
    5$g_{8}$1.31.00
    6$g_{7}$1.50.70
    7$g_{9}$1.51.50
    8$g_{41}$1.60.50
    9$g_{11}$1.70.70
    10$g_{6}$1.91.30
    11$g_{51}$2.13.50
    下载: 导出CSV
  • [1] CHANG H W, TAI Y C, HSU Y J. Context-aware taxi demand hotspots prediction[J]. International Jounal of Business Intelligence and Data Mining, 2010, 5(1):3-18. doi:  10.1504/IJBIDM.2010.030296
    [2] LI X L, PAN G, WU Z H, et al. Prediction of urban human mobility using large-scale taxi traces and its application[J]. Frontiers of Computer Science, 2012, 6(1):111-121. http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswz-jsjkx201201009
    [3] LIU H P, JIN C Q, ZHOU A Y. Popular route planing with travel cost estimation[C]//International Conference on Database Systems for Advanced Applications(DASFAA), 2016, 2016: 403-418.
    [4] CHEN C, CHEN X, WANG Z, et al. Scenicplanner:Planning scenic travel routes leveraging heterogeneous user-generated digital footprints[J]. Frontiers of Computer Science, 2017, 11(1):61-74. doi:  10.1007/s11704-016-5550-2
    [5] EOIN O M, DAVID B S. Data analysis and optimization for (citi)bike sharing[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence. AAAI, 2015: 687-694.
    [6] DIMITRIOS T, IOANNIS B, VANA K. Lessons learnt from the analysis of a bike sharing system[C]//PETRA'17 Proceedings of the 10th International Conference on PErvasive Technologies Related to Assistive Environments. 2017: 261-264.
    [7] CHENG F, JANE H, DANIEL R. Moment-based probabilistic prediction of bike availability for bike-sharing systems[C]//International Conference on Quantitative Evaluation of Systems, QEST 2016: Quantitative Evaluation of Systems. 2016: 139-155.
    [8] CHEN L B, ZHANG D Q, PAN G, et al. Bike sharing station placement leveraging heterogeneous Urban open data[C]//Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 2015: 571-575.
    [9] DIVYA S, SOMYA S, PETER I F, et al. Predicting bike usage for New York City.s Bike sharing system[C]//Association for the Advancement of Artificial Intelligence. 2015: 110-114.
    [10] LIU J M, SUN L L, CHEN W W, et al. Rebalancing bike sharing systems: A multi-source data smart optimization[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2016: 1005-1014.
    [11] FÁBIO C, ANAND S, BRUNO P.B, et al. A heuristic algorithm for a single vehicle static bike sharing rebalancing problem[J]. Computers & Operations Research, 2017, 79:19-33.
    [12] ALVAREZ-VALDES R, BELENGUER J M, BENAVENT E, et al. Optimizing the level of service quality of a bike-sharing system[J]. Omega, 2015, 62:163-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9b015e7c3d8974d18e08b7d023892292
    [13] LI Y X, ZHENG Y, ZHANG H C, et al. Traffic prediction in a bike-sharing system[C]//Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM SIGSPATIAL, 2015: Article No 33.
    [14] CHRISTIAN K, GUNTHER R R. Full-load route planning for balancing bike sharing systems by logic-based benders decomposition[J]. Wiley Periodicals, 2017, 69(3):270-289. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a7bc0394d83c1171935047514e7fb07
    [15] DIJSTRA E D. A note on two problem in connexion with graphs[J]. Numerische Mathematik, 1959(1):269-271. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/001872676702000107
    [16] MAO J L, SONG Q G, JIN C Q, et al. TSCluWin: Trajectory stream clustering over sliding window[C]//DASFAA 2016: Databases Systems for Advanced Applications. 2016: 133-148.
    [17] JOSHI S, KAUR S. Nearest neighbor insertion algorithm for solving capacitated vehicle routing problem[C]//International Conference on Computing for Sustainable Global Development. 2015: 86-88.
    [18] ZHAO F G, LI S J, SUN J S, et al. Genetic algorithm for the one-commodity pickup-and-delivery traveling salesman problem[J]. Computers and Industrial Engineering(COMPUT IND ENG), 2009, 56(4):1642-1648. doi:  10.1016/j.cie.2008.10.014
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  78
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回