中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河道修复中常见植物种类对淡色库蚊产卵行为的影响

肖冰 马明海 黄民生 陈奇 冷培恩 何岩

肖冰, 马明海, 黄民生, 陈奇, 冷培恩, 何岩. 河道修复中常见植物种类对淡色库蚊产卵行为的影响[J]. 华东师范大学学报(自然科学版), 2019, (6): 132-139, 152. doi: 10.3969/j.issn.1000-5641.2019.06.013
引用本文: 肖冰, 马明海, 黄民生, 陈奇, 冷培恩, 何岩. 河道修复中常见植物种类对淡色库蚊产卵行为的影响[J]. 华东师范大学学报(自然科学版), 2019, (6): 132-139, 152. doi: 10.3969/j.issn.1000-5641.2019.06.013
XIAO Bing, MA Ming-hai, HUANG Min-sheng, CHEN Qi, LENG Pei-en, HE Yan. Ovipositional response of Culex pipiens pallens to common species of plants used in river ecological restoration[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 132-139, 152. doi: 10.3969/j.issn.1000-5641.2019.06.013
Citation: XIAO Bing, MA Ming-hai, HUANG Min-sheng, CHEN Qi, LENG Pei-en, HE Yan. Ovipositional response of Culex pipiens pallens to common species of plants used in river ecological restoration[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 132-139, 152. doi: 10.3969/j.issn.1000-5641.2019.06.013

河道修复中常见植物种类对淡色库蚊产卵行为的影响

doi: 10.3969/j.issn.1000-5641.2019.06.013
基金项目: 

国家自然科学基金 51278192

国家科技重大专项 2013ZX07101012

普陀区高层次人才科研创新项目 普人才2014-A-18

详细信息
    作者简介:

    肖冰, 女, 硕士研究生, 研究方向为城市水环境与蚊虫孳生.E-mail:xiaobing_19940430@163.com

    通讯作者:

    黄民生, 男, 教授, 博士生导师, 研究方向为水环境治理与修复.E-mail:mshuang@des.ecnu.edu.cn

  • 中图分类号: Q965

Ovipositional response of Culex pipiens pallens to common species of plants used in river ecological restoration

  • 摘要: 比较研究了石菖蒲、香菇草、鱼腥草、粉绿狐尾藻和绿薄荷5种植物及其挥发性物质对淡色库蚊产卵行为的影响.结果表明,石菖蒲的蚊虫产卵活性指数(OAI)值为+0.58,抑制率为0%,具有较强的引诱作用;香菇草、鱼腥草和粉绿狐尾藻的OAI值分别为-0.70、-0.64和-0.16,抑制率分别为82.46%、78.36%和27.05%,其中香菇草和鱼腥草的OAI值均小于-0.30,可作为抑制剂;5种植物中,绿薄荷的抑制作用最强(OAI=-1.00,ER=100.00%),最适合作为驱蚊植物.挥发性有机物中苯类化合物与OAI值呈显著正相关(r=0.09,p < 0.05),萜烯类中的单萜烯类与OAI值呈显著负相关(r=-0.09,p < 0.05).本文为河道修复及蚊虫防治的协同发展提供了理论依据.
  • 图  1  蚊虫嗅觉系统在产卵选择行为中的调控[12]

    Fig.  1  Oviposition site selection behavior of the mosquito olfactory system

    图  2  成蚊产卵试验装置

    Fig.  2  Apparatus for oviposition response testing of adult mosquitoes

    图  3  种植物总离子流

    注: a石菖蒲Acorus tatarinowii; b香菇草Hydrocotyle vulgaris; c鱼腥草Houttuynia cordata Thunb; d粉绿狐尾藻Myriophyllum aquaticum (Vell.) Verdc; e绿薄荷Mentha spicata

    Fig.  3  Total ion current of five plants

    表  1  植物鲜重

    Tab.  1  Fresh weight of plants

    植物 鲜重/g
    石菖蒲 2.947
    香菇草 2.913
    鱼腥草 2.315
    粉绿狐尾藻 2.587
    绿薄荷 2.027
    下载: 导出CSV

    表  2  淡色库蚊在不同植物条件下的产卵反应

    Tab.  2  Ovipositional response of Culex pipiens pallens to five different plants

    植物 产卵数* OAI ER
    石菖蒲 465.00± 164.59 +0.58 0
    香菇草 21.40± 13.38 -0.70 82.46%
    鱼腥草 26.40± 20.53 -0.64 78.36%
    粉绿狐尾藻 89.00± 37.88 -0.16 27.05%
    绿薄荷 0.00± 0.00 -1.00 100.00%
    注:*产卵数为平均值±标准差, 数量n=5
    下载: 导出CSV

    表  3  5种植物挥发物中主要成分的相对含量及与OAI值的相关性

    Tab.  3  Relative composition of major chemical components from volatiles of the five plants and its correlation with OAI values

    挥发性有机物种类 化合物的相对含量 相关系数
    石菖蒲a/% 香菇草a/% 鱼腥草a/% 粉绿狐尾藻a/% 绿薄荷a/%
    酯类 0.67 - 0.02 4.12 0.18 0.60
    酚类 0.51 - 0.17 3.28 - 0.87
    醇类 2.41 0.02 28.04 - 6.82 -0.30
    酮类 0.43 - 5.94 2.04 25.07 -0.40
    醛类 0.09 - - 1.87 - 0.78
    醚类 1.68 - 4.07 2.17 - 0.56
    链状烷烃 1.03 26.76 0.24 27.00 - 0.50
    其他烯烃 13.03 20.61 12.38 18.93 1.70 0.30
    苯类 0.41 0.12 0.39 3.13 - 0.90*
    酸类 - - - 0.18 - 0.35
    萜烯类 单萜烯 1.53 5.77 3.13 - 45.15 -0.90*
    倍半萜烯 32.68 42.98 33.24 - 20.20 -0.20
    小计 34.21 48.75 36.37 - 65.35 -0.90*
    注:a表示5种植物中每种主要化合物成分的相对含量; *指在0.05水平上显著相关
    下载: 导出CSV
  • [1] RANSON H, LISSENDEN N. Insecticide resistance in African anopheles mosquitoes:A worsening situation that needs urgent action to maintain malaria control[J]. Trends in Parasitology, 2016, 32(3):187-196. doi:  10.1016/j.pt.2015.11.010
    [2] RANSON H, N'GUESSAN R, LINES J, et al. Pyrethroid resistance in African anopheline mosquitoes:What are the implications for malaria control?[J]. Trends in Parasitology, 2011, 27(2):91-98. doi:  10.1016/j.pt.2010.08.004
    [3] MUEMA J M, BARGUL J L, NJERU S N, et al. Prospects for malaria control through manipulation of mosquito larval habitats and olfactory-mediated behavioural responses using plant-derived compounds[J]. Parasites & Vectors, 2017(10):184. http://cn.bing.com/academic/profile?id=1ef3f3a0e2985cebfdd1b7e4aaa69053&encoded=0&v=paper_preview&mkt=zh-cn
    [4] RUSSELL T L, GOVELLA N J, AZIZI S, et al. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania[J]. Malaria Journal, 2011(10):80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000001153245
    [5] NEAFSEY D E, WATERHOUSE R M, ABAI M R, et al. Highly evolvable malaria vectors:Thegenomes of 16Anophelesmosquitoes[J]. Science, 2015, 347(6217):1258522. doi:  10.1126/science.1258522
    [6] RUSSELL T L, BEEBE N W, COOPER R D, et al. Successful malaria elimination strategies require interventions that target changing vector behaviours[J]. Malaria Journal, 2013(12):56. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3570334
    [7] NAVARRO-SILVA M A, MARQUES F A, DUQUE L J E. Review of semiochemicals that mediate the oviposition of mosquitoes:A possible sustainable tool for the control and monitoring of Culicidae[J]. Revista Brasileira de Entomologia, 2009, 53(1):1-6. doi:  10.1590/S0085-56262009000100002
    [8] MOLLER-JACOBS L L, MURDOCK C C, THOMAS M B. Capacity of mosquitoes to transmit malaria depends on larval environment[J]. Parasites & Vectors, 2014(7):593. http://cn.bing.com/academic/profile?id=48ba502a99afaeba220038f1761082ac&encoded=0&v=paper_preview&mkt=zh-cn
    [9] TAKKEN W, KNOLS B G J. Odor-mediated behavior of afrotropical malaria mosquitoes[J]. Annual Review of Entomology, 1999, 44(17):131-157. http://cn.bing.com/academic/profile?id=289855a0b6dfd7ff060c75feadb96eb6&encoded=0&v=paper_preview&mkt=zh-cn
    [10] WANG G R, CAREY A F., CARLSON J R, et al. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae[J]. Proc Natl Acad Sci USA, 2010, 107(9):4418-4423. doi:  10.1073/pnas.0913392107
    [11] TUMLINSON J H. The importance of volatile organic compounds in ecosystem functioning[J]. Journal of Chemical Ecology, 2014, 40(3):212. doi:  10.1007/s10886-014-0399-z
    [12] HERRERA-VARELA M, LINDH J, LINDSAY S W, et al. Habitat discrimination by gravid Anopheles gambiae sensu lato-a push-pull system[J]. Malaria Journal, 2014, 13:133. doi:  10.1186/1475-2875-13-133
    [13] MA M H, HUANG M S, LENG P E. Abundance and distribution of immature mosquitoes in urban riversproximate to their larval habitats[J]. Acta Tropica, 2016, 162:121-129. http://cn.bing.com/academic/profile?id=231905e57e7fbb6d793d38e9c5ba8bff&encoded=0&v=paper_preview&mkt=zh-cn
    [14] RAJKUMAR S, JEBANESAN A. Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family:Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera:Culicidae)[J]. Parasitology Research, 2009, 104(2):337-340. doi:  10.1007/s00436-008-1197-8
    [15] GOVINDARAJAN M, MATHIVANAN T, ELUMALAI K, et al. Ovicidal and repellent activities of botanical extracts against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera:Culicidae)[J]. Asian Pacific Journal of Tropical Biomedicine, 2011, 1(1):43-48. doi:  10.1016/S2221-1691(11)60066-X
    [16] 黄民生, 马明海, 曹承进, 等.城市水体环境及其治理:案例分析[M].北京:中国建筑工业出版社, 2017.
    [17] 史睿杰, 谢寿安, 赵薇, 等.青海云杉针叶和枝条的挥发性化合物的固相微萃GC/MS分析[J].西北林学院学报, 2011, 26(6):95-99. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xblxyxb201106021
    [18] GANESAN K, MENDKI M J, SURYANARAYANA M V S, et al. Studies of Aedes aegypti (Diptera:Culicidae) ovipositional responses to newly identified semiochemicals from conspecific eggs[J]. Australian Journal of Entomology, 2006, 45:75-80. doi:  10.1111/j.1440-6055.2006.00513.x
    [19] KRAMER W L, MULLA M S. Oviposition attractants and repellents of mosquitoes:Oviposition responses of culex mosquitoes to organic infusions[J]. Environmental Entomology, 1979, 8(6):1111-1117. doi:  10.1093/ee/8.6.1111
    [20] GAO Y, JIN Y J, LI H D, et al. Volatile organic compounds and their roles in bacteriostasisin five conifer Species[J]. Journal of Integrative Plant Biology, 2005, 47(4):499-507. http://cn.bing.com/academic/profile?id=8e3737b6b89a3dc08f75f198c2532342&encoded=0&v=paper_preview&mkt=zh-cn
    [21] GOVINDARAJAN M, SIVAKUMAR R, RAJESWARI M, et al. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species[J]. Parasitology Research, 2012, 110(5):2023-2032. doi:  10.1007/s00436-011-2731-7
    [22] 盛辛辛, 曹谨玲, 赵凤岐, 等.芦苇和美人蕉及薄荷用作人工湿地植物对中水的净化效果[J].湖南农业大学学报(自然科学版), 2013, 39(4):423-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunannydx201304018
    [23] 霍张丽, 朱广龙, 张江汀, 等.模拟人工湿地植物对富营养化水体的修复研究[J].水土保持研究, 2014, 21(5):267-271. http://d.old.wanfangdata.com.cn/Thesis/D495463
    [24] BAAK-BAAK C M, RODRÍGUEZ-RAMÍREZ A D, GARCÍA-REJÓN J E, et al. Development and laboratory evaluation of chemically-based baited ovitrap for the monitoring of Aedes aegypti[J]. Journal of Vector Ecology, 2013, 38(1):175-181. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c1198706eb35cd8072f05b5d6fabf4f4
    [25] MATASYOH J C, WATHUTA E M, KARIUKI S T, et al. Chemical composition and larvicidal activity of Piper capense essential oil against the malaria vector, Anopheles gambiae[J]. Journal of Asia-Pacific Entomology, 2011, 14(1):26-28. doi:  10.1016/j.aspen.2010.11.005
    [26] AUTRAN E S, NEVES I A, DA SILVA C S B, et al. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae)[J]. Bioresource Technology, 2009, 100(7):2284-2288. doi:  10.1016/j.biortech.2008.10.055
    [27] PERRY A S, FAY R W. Correlation of chemical constitution and physical properties of fatty acid esters with oviposition response of Ae. aegypti[J]. Mosquito News, 1967, 27(2):175-183. https://www.researchgate.net/publication/284635677_Correlation_of_chemical_constitution_and_physical_properties_of_fatty_acid_esters_with_oviposition_response_of_Aedes_aegypti
    [28] SHARMA K R, SEENIVASAGAN T, RAO A N, et al. Oviposition responses of Aedes aegypti and Aedes albopictus to certain fatty acid esters[J]. Parasitology Research, 2008, 103(5):1065-1073. doi:  10.1007/s00436-008-1094-1
    [29] NYASEMBE V O, TORTO B. Volatile phytochemicals as mosquito semiochemicals[J]. Phytochemistry Letters, 2014, 8(1):196-201. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f1c61d75e61e7483727b14365f37a7de
    [30] DU Y J, MILLAR J G. Electroantennogram and oviposition bioassay responses of culex quinquefasciatus and culex tarsalis (Diptera:Culicidae) to chemicals in odors from bermuda grass infusions[J]. Journal of Medical Entomology, 1999, 36(2):158-166. doi:  10.1093/jmedent/36.2.158
    [31] AFIFY A, GALIZIA C G. Gravid females of the mosquito Aedes aegypti avoid oviposition on m-cresol in the presence of the deterrent isomer p-cresol[J]. Parasites & Vectors, 2014(7):315. doi:  10.1186/1756-3305-7-315
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  78
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-07
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回