中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环境因子对互花米草定居潮滩的影响分析

朱晓泾 袁琳 赵志远 张利权 李伟 魏伟 潘家琳 陈雅慧

朱晓泾, 袁琳, 赵志远, 张利权, 李伟, 魏伟, 潘家琳, 陈雅慧. 环境因子对互花米草定居潮滩的影响分析[J]. 华东师范大学学报(自然科学版), 2019, (6): 140-152. doi: 10.3969/j.issn.1000-5641.2019.06.014
引用本文: 朱晓泾, 袁琳, 赵志远, 张利权, 李伟, 魏伟, 潘家琳, 陈雅慧. 环境因子对互花米草定居潮滩的影响分析[J]. 华东师范大学学报(自然科学版), 2019, (6): 140-152. doi: 10.3969/j.issn.1000-5641.2019.06.014
ZHU Xiao-jing, YUAN Lin, ZHAO Zhi-yuan, ZHANG Li-quan, LI Wei, WEI Wei, PAN Jia-lin, CHEN Ya-hui. The influence of environmental factors on the settlement of Spartina alterniflora on tidal flats[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 140-152. doi: 10.3969/j.issn.1000-5641.2019.06.014
Citation: ZHU Xiao-jing, YUAN Lin, ZHAO Zhi-yuan, ZHANG Li-quan, LI Wei, WEI Wei, PAN Jia-lin, CHEN Ya-hui. The influence of environmental factors on the settlement of Spartina alterniflora on tidal flats[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 140-152. doi: 10.3969/j.issn.1000-5641.2019.06.014

环境因子对互花米草定居潮滩的影响分析

doi: 10.3969/j.issn.1000-5641.2019.06.014
基金项目: 

国家自然科学基金项目 41876093

上海市科委科研计划项目 17DZ1201902

上海市科委科研计划项目 18DZ1204802

上海市科委科研计划项目 18DZ1206506

国家重点研发计划项目 2016YFE0133700

详细信息
    作者简介:

    朱晓泾, 女, 硕士研究生, 研究方向为湿地生态学

    通讯作者:

    袁琳, 女, 副研究员, 研究方向为湿地生态学.E-mail:lyuan@sklec.ecnu.edu.cn

  • 中图分类号: Q948.1

The influence of environmental factors on the settlement of Spartina alterniflora on tidal flats

  • 摘要: 外来物种互花米草入侵给滨海湿地生态系统带来一系列生态危害.为了探究潮滩环境因子对互花米草入侵的影响,在上海南汇东滩选择了砂质与粉砂质两种不同类型的潮滩,由陆向海移栽互花米草根茎苗,同步监测不同样点高程、水动力、沉积物特性等环境因子及互花米草存活情况.通过冗余分析(Redundancy Analysis,RDA),研究影响互花米草根茎苗定植的主导环境因子.结果表明:(1)临界剪切应力、中值粒径、高程和最大流速对互花米草根茎苗定植有主导作用(P < 0.05).(2)当潮滩类型不同时,影响互花米草根茎苗定植的主要环境因子也有所不同,具体表现为在北部砂质潮滩上,高程和中值粒径是影响互花米草定植的主导因素(P < 0.05),高程越高、中值粒径越小,互花米草根茎苗的存活率越高;在南部粉砂质潮滩上,临界剪切应力是互花米草根茎苗定植的主导因素(P < 0.05),并与互花米草根茎苗定植存在正相关关系.上述结果对互花米草入侵的机理研究与防控管理具有理论价值与指导意义.
  • 图  1  研究区域位置图(a), 北部潮滩移栽样点示意图(b), 南部潮滩移栽样点示意图(c)

    注: N1——N5为北部潮滩移栽样点; S1——S5为南部潮滩移栽样点

    Fig.  1  Map of the study area (a), schematic diagram of the sampling sites on the northern tidal flat (b) and on the southern tidal flat (c)

    图  2  样点布设示意图(a), 移栽的互花米草根茎苗(b), ALEC及RBR仪器架设现场图(c), 沉积物临界剪切应力测定的实验过程图(d)

    注: 1——15为北部潮滩移栽样方, (16)——(30)为南部潮滩移栽样方, N1(70 m)表示N1样点距大堤距离为70 m, S1(50 m)表示S1样点距大堤距离为50m, 其余以此类推

    Fig.  2  Schematic diagram of a sample layout (a), transplant of S. alterniflora rhizomes (b), the typical setup of ALEC and RBR instruments (c), and experimental setup for measurement of sediment critical shear stress (d)

    图  3  各样点高程及平均流速

    Fig.  3  The elevation and average flow velocity at each site

    图  4  各样点波能密度曲线

    Fig.  4  The wave energy curve at each site

    图  5  各样点沉积物组分的谢帕德三角图

    Fig.  5  The Shepard ternary diagram of sediment components at each site

    图  6  各样点沉积物D50和临界剪切应力

    Fig.  6  The sediment D50 and critical shear stress at each site

    图  7  北部潮滩及南部潮滩互花米草根茎苗存活率

    注: (a)互花米草根茎苗存活率随天数的变化, (b)互花米草根茎苗存活率随繁殖体大小的变化, (c)互花米草根茎苗存活率随环境梯度的变化

    Fig.  7  The survival rate of S. alterniflora rhizomes in the northern and southern tidal flats

    图  8  南汇东滩互花米草存活率与潮滩环境因子的RDA排序图

    注: 蓝色箭头表示生物变量, 蓝色数字1、3、……20分别代表 1株/m2、3株/m2、……20株/m2的繁殖体大小; 红色箭头表示环境变量; 黑色圆圈和黑色三角分别表示北部潮滩和南部潮滩的移栽样方, 其中实心圆圈或三角代表消浪堤内的移栽样方, 空心圆圈或三角代表消浪堤外的移栽样方

    Fig.  8  RDA ordination diagram of S. alterniflora survival rates and environmental factors in the Nanhui Dongtan

    图  9  北部砂质潮滩互花米草存活率与环境因子的RDA排序图

    注: 蓝色箭头表示生物变量, 蓝色数字1、3、...20分别代表 1株/m2、3株/m2、...20株/m2的繁殖体大小; 红色箭头表示环境变量; 黑色实心圆点表示消浪堤内的移栽样方, 黑色空心圆点表示消浪堤外的移栽样方

    Fig.  9  RDA ordination diagram of S.alterniflora survival rates and environmental factors on the northern sandy flat

    图  10  南部粉砂质潮滩环境因子的RDA排序图

    注: 蓝色箭头表示生物变量, 蓝色数字1、3、...20分别代表 1株/m2、3株/m2、...20株/m2的繁殖体大小; 红色箭头表示环境变量; 黑色实心三角表示消浪堤内的移栽样方, 黑色空心三角表示消浪堤外的移栽样方

    Fig.  10  RDA ordination diagram of S. alterniflora survival rates and environmental factors on the southern silty flat

    表  1  潮滩环境因子的重要性排序及显著性检验

    Tab.  1  The relative importance and significance level of different tidal flat environmental factors

    排序 环境因子 对生物数据的解释量/% 对生物-环境关系的解释量/% F P
    1 τ 13.9 36.4 4.508 0.004
    2 D50 13.6 35.6 4.420 0.006
    3 mflow 10.4 27.2 3.256 0.014
    4 ele 10.2 26.7 3.178 0.008
    5 wave 5.9 15.4 1.762 0.114
    6 flow 5.7 14.9 1.692 0.148
    VIF>20 mwave 5.3 / 1.563 0.220
    第一轴 23.5 12.1 7.051 0.002
    第二轴 33.5 76 3.472 0.160
    下载: 导出CSV

    表  2  北部砂质潮滩环境因子的重要性排序及显著性检验

    Tab.  2  The relative importance and significance level of environmental factors on the northern tidal flat

    排序 环境因子 对生物数据的解释量/% 对生物-环境关系的解释量/% F P
    1 ele 32.4 69.2 6.236 0.002
    2 D50 23.4 50.0 3.965 0.006
    3 τ 14.3 30.6 2.167 0.088
    4 flow 8.8 18.8 1.261 0.268
    5 wave 4.4 9.4 0.678 0.596
    VIF>20 mflow 25.5 / 4.448 0.002
    VIF>20 mwave 5.2 / 0.713 0.612
    第一轴 34.0 72.6 4.63 0.034
    第二轴 41.1 87.9 1.095 0.866
    下载: 导出CSV

    表  3  南部粉砂质潮滩环境因子的重要性排序及显著性检验

    Tab.  3  The relative importance and significance level of environmental factors on the southern tidal flat

    排序 环境因子 对生物数据的解释量/% 对生物-环境关系的解释量/% F P
    1 τ 26.3 56.4 4.645 0.002
    2 wave 12.3 26.4 1.820 0.148
    3 flow 10.2 21.9 1.481 0.206
    4 ele 7.3 15.7 1.024 0.388
    5 mflow 1.1 2.4 0.148 0.974
    VIF>20 D50 26.3 / 4.636 0.002
    VIF>20 mwave 11.1 / 1.617 0.150
    第一轴 42.8 91.8 7.489 0.002
    第二轴 45.6 97.8 0.998 0.942
    下载: 导出CSV
  • [1] DAEHLER C C, STRONG D R. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA[J]. Biological Conservation, 1996, 78(1/2):51-58. doi:  10.1016-0006-3207(96)00017-1/
    [2] 王卿, 安树青, 马志军, 等.入侵植物互花米草——生物学、生态学及管理[J].植物分类学报, 2006, 44(5):559-588. http://d.old.wanfangdata.com.cn/Periodical/zwflxb200605009
    [3] RIDDIN T, VAN WYK E, ADAMS J. The rise and fall of an invasive estuarine grass[J]. South African Journal of Botany, 2016, 107:74-79. doi:  10.1016/j.sajb.2016.07.008
    [4] 赵彩云, 李俊生, 柳晓燕.中国主要外来入侵物种风险预警与管理[M].北京:中国环境科学出版社, 2016.
    [5] 宫璐, 李俊生, 柳晓燕, 等.中国沿海互花米草遗传多样性及其遗传结构[J].草业科学, 2014, 31(7):1290-1297. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201407013
    [6] 邓自发, 安树青, 智颖飙, 等.外来种互花米草入侵模式与爆发机制[J].生态学报, 2006, 26(8):2678-2686. doi:  10.3321/j.issn:1000-0933.2006.08.034
    [7] 陈中义, 李博, 陈家宽.米草属植物入侵的生态后果及管理对策[J].生物多样性, 2004, 12(2):280-289. http://d.old.wanfangdata.com.cn/Periodical/swdyx200402009
    [8] 李郑杰.漳江口红树林区互花米草入侵及扩散机制研究[D].福建厦门: 厦门大学, 2014.
    [9] 赵彩云, 柳晓燕, 白加德, 等.广西北海西村港互花米草对红树林湿地大型底栖动物群落的影响[J].生物多样性, 2014, 22(5):630-639. http://d.old.wanfangdata.com.cn/Periodical/swdyx201405011
    [10] BALKE T, BOUMA T J, HORSTMAN E M, et al. Windows of opportunity:thresholds to mangrove seedling establishment on tidal flats[J]. Marine Ecology Progress Series, 2011, 440(1):1-9. http://cn.bing.com/academic/profile?id=037956be4ee52309679e10e1f32f785a&encoded=0&v=paper_preview&mkt=zh-cn
    [11] SCHWARZ C, BOUMA T J, ZHANG L Q, et al. Interactions between plant traits and sediment characteristics influencing species establishment and scale-dependent feedbacks in salt marsh ecosystems[J]. Geomorphology, 2015, 250:298-307. doi:  10.1016/j.geomorph.2015.09.013
    [12] 李蕙, 袁琳, 张利权, 等.长江口滨海湿地潮间带生态系统的多稳态特征[J].应用生态学报, 2017, 28(1):327-336. http://d.old.wanfangdata.com.cn/Periodical/yystxb201701037
    [13] SCHWARZ C, YSEBAERT T, ZHU Z, et al. Abiotic factors governing the establishment and expansion of two salt marsh plants in the Yangtze Estuary, China[J]. Wetlands, 2011, 31(6):1011-1021. doi:  10.1007/s13157-011-0212-5
    [14] 王卿, 汪承焕, 黄沈发, 等.盐沼植物群落研究进展:分布、演替及影响因子[J].生态环境学报, 2012, 21(2):375-388. doi:  10.3969/j.issn.1674-5906.2012.02.030
    [15] 闫芊, 陆健健, 何文珊.崇明东滩湿地高等植被演替特征[J].应用生态学报, 2007, 18(5):1099-1103. http://d.old.wanfangdata.com.cn/Periodical/yystxb200705027
    [16] ZHU Z, ZHANG L, WANG N, et al. Interactions between the range expansion of saltmarsh vegetation and hydrodynamic regimes in the Yangtze Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2012, 96(1):273-279. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f529ace1cc71596b47461c2f9e9c48e0
    [17] CAO H, ZHU Z, BALKE T, et al. Effects of sediment disturbance regimes on Spartina seedling establishment:Implications for salt marsh creation and restoration[J]. Limnology and Oceanography, 2018, 63(2):647-659. doi:  10.1002/lno.10657
    [18] HU Z, VAN BELZEN J, VAN DER WAL D, et al. Windows of opportunity for salt marsh vegetation establishment on bare tidal flats:The importance of temporal and spatial variability in hydrodynamic forcing[J]. Journal of Geophysical Research Biogeosciences, 2015, 120(7):1450-1469. doi:  10.1002/2014JG002870
    [19] BALKE T, HERMAN P M J, BOUMA T J. Critical transitions in disturbance-driven ecosystems:Identifying windows of opportunity for recovery[J]. Journal of Ecology, 2014, 102(3):700-708. doi:  10.1111/1365-2745.12241
    [20] 曹浩冰, 葛振鸣, 祝振昌, 等.崇明东滩盐沼植被扩散格局及其形成机制[J].生态学报, 2014, 34(14):3944-3952. http://d.old.wanfangdata.com.cn/Periodical/stxb201414018
    [21] 沙晨燕, 李玲, 唐浩, 等.典型滩涂环境因子对植物群落空间分布的影响[J].人民长江, 2016, 47(22):10-15. http://d.old.wanfangdata.com.cn/Periodical/rmcj201622004
    [22] CALLAGHAN D P, BOUMA T J, KLAASSEN P, et al. Hydrodynamic forcing on salt-marsh development:Distinguishing the relative importance of waves and tidal flows[J]. Estuarine Coastal and Shelf Science, 2010, 89(1):73-88. doi:  10.1016/j.ecss.2010.05.013
    [23] VANDENBRUWAENE W, TEMMERMAN S, BOUMA T J, et al. Flow interaction with dynamic vegetation patches:Implications for biogeomorphic evolution of a tidal landscape[J]. Journal of Geophysical Research:Earth Surface, 2011, 116(F1):155-170.
    [24] FAGHERAZZI S, CARNIELLO L, ALPAOS L D, et al. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(22):8337-8341. doi:  10.1073/pnas.0508379103
    [25] 刘曙光, 郁微微, 匡翠萍, 等.三峡工程对长江口南汇边滩近期演变影响初步预测[J].同济大学学报(自然科学版), 2010, 38(5):679-684. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201005009
    [26] 陈万逸, 张利权, 袁琳.上海南汇东滩鸟类栖息地营造工程的生境评价[J].海洋环境科学, 2012, 31(4):561-566. http://d.old.wanfangdata.com.cn/Periodical/hyhjkx201204022
    [27] 蒋丰佩, 何青, 张国安, 等.异质潮滩波浪衰减特性研究——以长江口崇明东滩为例[J].泥沙研究, 2013(1):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nsyj201301008
    [28] 薛春汀.两种碎屑沉积物分类的比较[J].海洋地质与第四纪地质, 1994, 14(2):109-113. http://d.old.wanfangdata.com.cn/Periodical/hydzdt200703007
    [29] XU K, CORBETT D R, WALSH J P, et al. Seabed erodibility variations on the Louisiana continental shelf before and after the 2011 Mississippi River flood[J]. Estuarine, Coastal and Shelf Science, 2014, 149:283-293. doi:  10.1016/j.ecss.2014.09.002
    [30] 肖石红, 张中瑞, 覃德华, 等.天宝岩国家级自然保护区4种类型泥炭藓沼泽植被组成及其与环境因子的关系[J].应用与环境生物学报, 2016, 22(4):631-638. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyyhjswxb201604016
    [31] 黄小荣, 何峰, 庞世龙, 等.广西石山人工林灌草多样性与环境因子的关系[J].生态学杂志, 2015, 34(11):3024-3033. http://d.old.wanfangdata.com.cn/Periodical/stxzz201511007
    [32] 郑杰文, 贾永刚, 刘晓磊, 等.现代黄河三角洲沉积物临界剪切应力研究[J].海洋学报, 2015, 37(3):86-98. http://d.old.wanfangdata.com.cn/Periodical/hyxb2015030010
    [33] 张利权, 袁琳.基于生态系统的海岸带管理[M].北京:海洋出版社, 2012.
    [34] 刘红, 何青, 吉晓强, 等.波流共同作用下潮滩剖面沉积物和地貌分异规律——以长江口崇明东滩为例[J].沉积学报, 2008, 26(5):833-843. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200805016
    [35] 傅开道, 杨文辉, 苏斌, 等.流域环境变化的河流沉积物粒度响应——澜沧江案例[J].地理科学进展, 2015, 34(9):1148-1155. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkxjz201509007
    [36] GE Z M, WANG H, CAO H B, et al. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes[J]. Scientific Reports, 2016, 6(1):28466-28475. doi:  10.1038/srep28466
    [37] 陈中义, 李博, 陈家宽.长江口崇明东滩土壤盐度和潮间带高程对外来种互花米草生长的影响[J].长江大学学报(自然科学版), 2005, 2(2):6-9. doi:  10.3969/j.issn.1673-1409-C.2005.02.002
    [38] 刘会玉, 林振山, 齐相贞, 等.基于个体的空间显性模型和遥感技术模拟入侵植物扩张机制[J].生态学报, 7794-7802.
    [39] 赵志远, 袁琳, 李伟, 等.生境异质性及源株密度对互花米草入侵力的影响[J].生态学报, 2018, 38(18):6632-6641. http://d.old.wanfangdata.com.cn/Periodical/stxb201818027
    [40] ZHU Q, YANG S, MA Y. Intra-tidal sedimentary processes associated with combined wave-current action on an exposed, erosional mudflat, southeastern Yangtze River Delta, China[J]. Marine Geology, 2014, 347(2):95-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3ea95a4ec2d9cfd1959d3b7e253e493a
    [41] YUAN L, ZHANG L, XIAO D, et al. The application of cutting plus waterlogging to control Spartina alterniflora on saltmarshes in the Yangtze Estuary, China[J]. Estuarine, Coastal and Shelf Science, 2011, 92(1):103-110. doi:  10.1016/j.ecss.2010.12.019
    [42] 赵相健, 柳晓燕, 宫璐, 等.刈割加遮荫综合治理互花米草(Spartina alterniflora)[J].生态学杂志, 2014, 33(10):2714-2719. http://d.old.wanfangdata.com.cn/Periodical/stxzz201410019
    [43] 肖德荣, 祝振昌, 袁琳, 等.上海崇明东滩外来物种互花米草二次入侵过程[J].应用生态学报, 2012, 23(11):2997-3002. http://d.old.wanfangdata.com.cn/Periodical/yystxb201211010
    [44] 邸向红, 侯西勇, 吴莉.中国海岸带土地利用遥感分类系统研究[J].资源科学, 2014, 36(3):463-472. http://d.old.wanfangdata.com.cn/Periodical/zykx201403005
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-14
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回