中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海中部浮游生态系统季节变化的数值模拟

陈建忠 葛建忠 BELLERBY Richard

陈建忠, 葛建忠, BELLERBY Richard. 东海中部浮游生态系统季节变化的数值模拟[J]. 华东师范大学学报(自然科学版), 2019, (6): 153-168. doi: 10.3969/j.issn.1000-5641.2019.06.015
引用本文: 陈建忠, 葛建忠, BELLERBY Richard. 东海中部浮游生态系统季节变化的数值模拟[J]. 华东师范大学学报(自然科学版), 2019, (6): 153-168. doi: 10.3969/j.issn.1000-5641.2019.06.015
CHEN Jian-zhong, GE Jian-zhong, BELLERBY Richard. Numerical simulation of pelagic ecosystem's seasonal variation in the central East China Sea[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 153-168. doi: 10.3969/j.issn.1000-5641.2019.06.015
Citation: CHEN Jian-zhong, GE Jian-zhong, BELLERBY Richard. Numerical simulation of pelagic ecosystem's seasonal variation in the central East China Sea[J]. Journal of East China Normal University (Natural Sciences), 2019, (6): 153-168. doi: 10.3969/j.issn.1000-5641.2019.06.015

东海中部浮游生态系统季节变化的数值模拟

doi: 10.3969/j.issn.1000-5641.2019.06.015
基金项目: 

国家重点研发计划 2016YFA0600903

国家自然科学基金 41776104

国家自然科学基金 41476076

详细信息
    作者简介:

    陈建忠, 男, 硕士研究生, 研究方向为海洋数值模拟.E-mail:chenjianzhong1003@outlook.com

    通讯作者:

    葛建忠, 男, 副研究员, 硕士生导师, 研究方向为海洋环境动力学数值模拟.E-mail:jzge@sklec.ecnu.edu.cn

  • 中图分类号: Q735

Numerical simulation of pelagic ecosystem's seasonal variation in the central East China Sea

  • 摘要: 利用一维物理-生物耦合模型(GOTM-FABM-ERSEM)对东中国海中部站位浮游生态系统要素的季节变化进行模拟,较好地刻画并分析了其物理、生化要素之间的相互作用.模拟结果表明浮游生态系统的季节性变化的物理控制因子主要为光照、温度及其引起的垂向层化;生化控制因子主要为营养盐水平,其夏季集中分布在跃层以下深度,并在9月达到最大值.模型较好地呈现了春秋季浮游植物的双峰结构,浮游植物在夏季次表层(约20m)出现最大值,并在潮汐混合影响下呈周期性斑块状生长,峰值为5.3 mg ·m-3.浮游动物和细菌的分布与浮游植物类似,均在春季达到最大值,并滞后3d左右,细菌在夏季表层受浮游植物和温度影响.
  • 图  1  ERSEM模型结构图(改自Butenschön等[20])

    注: 图中的黑色实线表示物质与能量流动方向, POM为颗粒有机物, DOM为溶解有机物

    Fig.  1  ERSEM schematic (Modified from Butenschön et al[20])

    图  2  GOTM-FABM-ERSEM耦合框架图

    注: FABM为GOTM与ERSEM的生物子模块提供接口

    Fig.  2  GOTM-FABM-ERSEM coupling framework

    图  3  本文一维生物-物理耦合模型研究站点示意图

    注: 图中红色星号(125°E, 31°N)即为模拟位置, 4个黑色点为WOA数据提取网格点

    Fig.  3  The red star(125°E, 31°N) shows the detailed position of the research station in the East China Sea studied in this paper; the four black dots represent the WOA grid points used for extracting data

    图  4  (a) 2006——2007年两年平均的光照在水柱中垂向衰减和随时间变化; (b)研究区域2006——2007年两年平均的月平均风速矢量图(黑色箭头表示正北方向)

    Fig.  4  (a) The two year average vertical attenuation of light in the water column and the variability in light with time from 2006——2007; (b) The two year average monthly wind speed vector at the study station from 2006——2007 (the black arrow indicates north)

    图  5  2006——2007年两年平均的模拟温度和盐度随时间和深度变化

    注: (a)为温度随时间变化, (a-1)至(a-4)为模拟温度月平均值(黑色实线)和WOA相应月份月平均值(红点)对比; (b)为盐度随时间变化, (b-1)至(b-4)为模拟盐度月平均值(黑色实线)与WOA相应月份平均值(红点)对比

    Fig.  5  The two year average simulated temperature and salinity changes with time from 2006——2007

    图  6  2006——2007年两年平均的营养盐随时间变化和与观测数据对比

    注: 营养盐的观测数据来自《中国近海海洋图集》海洋化学分册(Observation红色实线), 模型数据(Model黑色实线)的取值时间为观测数据所在月份的15日

    Fig.  6  A comparison of two year average nutrients with observation data from 2006——2007

    图  7  表层叶绿素a随时间变化(蓝色实线)和与卫星数据(红点)对比结果

    Fig.  7  A comparison of modeled surface chlorophyll-a (blue solid line) with the chlorophyll-a from Plymouth Marine Laboratory's reanalysis of daily satellite data (red points)

    图  8  2006——2007年两年平均的叶绿素a随时间变化和与观测数据对比结果

    注: 图(a-1)——(a-4)灰色阴影部分为WOD所提供的叶绿素a的取值范围, 蓝色实线表示WOD数据的平均值

    Fig.  8  Two year average Chlorophyll-a changes with time compared with observation data from 2006——2007

    图  9  (a) 表示2006——2007年, 浮游植物, 浮游动物和细菌在深度积分平均的生物量的季节变化; (b) 2006——2007年, 浮游植物, 浮游动物和细菌在表层生物量的季节变化

    注: 图中生物量均以碳含量表示, 单位为mg C·m-3

    Fig.  9  (a) Seasonal variations of depth integrated mean biomass of phytoplankton, zooplankton, and bacteria from 2006——2007; (b) Seasonal variations in surface biomass of phytoplankton, zooplankton, and bacteria from 2006——2007

    图  10  2006——2007年两年平均的浮游动物和细菌随时间和深度的变化

    注: 浮游动物和细菌的生物量用其所含碳量表示, 其单位为mg C·m-3

    Fig.  10  Two year average variation in zooplankton and bacteria over time and depth from 2006——2007

    表  1  物理模型相关参数取值

    Tab.  1  Physical parameters in the GOTM

    参数 取值 单位
    生物与物理模型时间步长比例 1 -
    混合层深度湍流动能阈值 1× 10-5 m2/s2
    最小湍流动能 1× 10-6 m2/s2
    最小湍流耗散率 1× 10-12 m2/s3
    混合长度限制系数 0.53 -
    温度剖面数据松弛时间 86 400.0 s
    盐度剖面松数据弛时间 86 400.0 s
    底部粗糙度 0.05 m
    下载: 导出CSV

    表  2  浮游植物相关参数取值

    Tab.  2  Phytoplankton-related parameters in the ERSEM

    参数 硅藻 微微型浮游植物 微型浮游植物 小型浮游植物
    10°最大生产率/d-1 1.375 2.0 1.625 1.125
    Q10方程系数 2.0 2.0 2.0 2.0
    呼吸率 4× 10-2 4.5× 10-2 4×10-2 3.5× 10-2
    最小N:C 4.2× 10-3 6× 10-3 5×10-3 4.2× 10-3
    最小P:C 1× 10-3 3.5× 10-4 2.25×10-4 1× 10-3
    最大N:C 1.075 1.0 1.075 1.1
    最大P:C 2.0 1.5 2.0 2.7
    最大Si:C 1.18× 10-2 - - -
    硅酸盐半饱和常数/ (μmol· L-1) 2× 10-1 - - -
    死亡率/d-1 5× 10-2 5.5× 10-2 5× 10-2 4.5× 10-2
    P-I曲线的初始斜率/(W· d-1) 4.0 6.0 5.0 3.0
    光抑制参数/(W· d-1) 7× 10-2 1.2×10-1 1× 10-1 6× 10-2
    最大Chl:C 6× 10-2 1.5× 10-2 2.5×10-2 4.5× 10-2
    下载: 导出CSV

    表  3  浮游动物和细菌相关参数取值

    Tab.  3  Zooplankton- and Bacteria-related parameters in the ERSEM

    参数 异养鞭毛虫 微型浮游动物 中型浮游动物 细菌
    Q10方程系数 2.0 2.0 2.0 2.0
    米氏食物感知常数/(mg C· m-3) 12.0 12.0 12.0 -
    米氏食物吸收常数/(mg C· m-3) 28.0 32.0 36.0 -
    参考温度最大吸收率/ d-1 1.5 1.25 1.0 2.2
    同化效率 4× 10-1 5× 10-1 6×10-1 -
    呼吸率/d-1 2.5× 10-2 2× 10-2 1.5× 10-2 1× 10-1
    死亡率/d-1 5× 10-2 5× 10-2 5×10-2 5× 10-2
    米氏氧限制常数 7.81 7.81 7.81 -
    米氏氮限制常数 - - - 5× 10-1
    米氏磷限制常数 - - - 5× 10-1
    最大P:C 1× 10-3 1× 10-3 7.86×10-4 1.9× 10-3
    最大N:C 1.67× 10-2 1.67× 10-2 1.226× 10-2 1.67× 10-2
    下载: 导出CSV
  • [1] 沈国英, 黄凌风.海洋生态学[M]. 2版.北京:科学出版社, 2002.
    [2] 姜加虎, 王苏民.长江流域水资源、灾害及水环境状况初步分析[J].第四纪研究, 2004, 24(5):512-517. http://d.old.wanfangdata.com.cn/Periodical/dsjyj200405006
    [3] 白涛, 杨德周, 尹宝树.夏季长江口外海区域上升流现象的数值研究[J].海洋科学, 2009, 33(11):65-72. http://d.old.wanfangdata.com.cn/Periodical/hykx200911013
    [4] 董书航.东海营养盐分布特征及跨陆架交换研究[D].山东青岛: 中国海洋大学, 2015.
    [5] 孙百晔.长江口及邻近海域浮游植物生长的光照效应研究[D].山东青岛: 中国海洋大学, 2008.
    [6] 文斐, 孙晓霞, 郑珊, 等. 2011年春、夏季黄、东海叶绿素a和初级生产力的时空变化特征[J].海洋与湖沼, 2012, 43(3):438-444. http://d.old.wanfangdata.com.cn/Periodical/hyyhz201203009
    [7] 朱建荣, 肖成猷, 沈焕庭.夏季长江冲淡水扩展的数值模拟[J].海洋学报:中文版, 1998, 20(5):13-22. http://d.old.wanfangdata.com.cn/Periodical/hyxb201301004
    [8] 葛建忠, 胡克林, 丁平兴.风暴潮集成预报可视化系统设计和应用[J].华东师范大学学报(自然科学版), 2007(4):20-25. http://xblk.ecnu.edu.cn/CN/abstract/abstract23735.shtml
    [9] 杨德周, 许灵静, 尹宝树, 等.黑潮跨陆架入侵东海年际变化的数值模拟[J].海洋与湖沼, 2017(6):1318-1327. http://d.old.wanfangdata.com.cn/Periodical/hyyhz201706019
    [10] 杨雪飞.基于GOCI和数值模拟的东海近岸悬浮泥沙浓度逐时变化研究[D].上海: 中国科学院研究生院(上海技术物理研究所), 2016.
    [11] 孙科.东海典型赤潮藻种群动态的数值模拟[D].山东青岛: 中国科学院研究生院(海洋研究所), 2013.
    [12] 闫庆.长江口外锋区浮游植物生物量及其影响因子的观测与数值模拟[D].上海: 上海海洋大学, 2016.
    [13] 贾守伟.长江冲淡水对长江口附近海域生态环境影响的数值研究[D].山东青岛: 中国海洋大学, 2014.
    [14] BLACKFORD J C, BURKILL P H. Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing:The application of a generic model[J]. Journal of Marine Systems, 2002, 36(3):239-267. http://cn.bing.com/academic/profile?id=9b1ae43e1927b34ccdfe6ef4283016b2&encoded=0&v=paper_preview&mkt=zh-cn
    [15] VICHI M, PINARDI N, ZAVATARELLI M, et al. One-dimensional ecosystem model tests in the Po prodelta area[J]. Environmental Modelling & Software, 1998, 13(5):471-4812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdf34bfcb280334df78985d5bc740aae
    [16] ALLEN J I, BLACKFORD J C, RADFORD P J. An 1-D vertically resolved modelling study of the ecosystem dynamics of the middle and southern Adriatic Sea[J]. Journal of Marine Systems, 1998, 18(1/2/3):265-286. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1ea1263006f79968a2f436767e5de45f
    [17] PAN S, SHI J, GAO H, et al. Contributions of physical and biogeochemical processes to phytoplankton biomass enhancement in the surface and subsurface layers during the passage of Typhoon Damrey[J]. Journal of Geophysical Research:Biogeosciences, 2017, 122(1):212-229. doi:  10.1002/2016JG003331
    [18] 夏洁, 高会旺.南黄海东部海域浮游生态系统要素季节变化的模拟研究[J].安全与环境学报, 2006, 6(4):59-65. http://d.old.wanfangdata.com.cn/Periodical/aqyhjxb200604016
    [19] BURCHARD H, BOLDING K, VILLARREAL M R. GOTM, a general ocean turbulence model: Theory, implementation and test cases[R]. Space Applications Institute, 1999.
    [20] BUTENSCHÖN M, CLARK J, ALDRIDGE J N, et al. ERSEM 15.06:Ageneric model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels[J]. Geoscientific Model Development, 2016, 9(4):1293-1339. doi:  10.5194/gmd-9-1293-2016
    [21] BRUGGEMAN J, BOLDING K. A general framework for aquatic biogeochemical models[J]. Environmental Modelling & Software, 2014, 61(C):249-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=87277483317550e8add0d3bd399caa03
    [22] MELLOR G L, YAMADA T. Development of a turbulent closure model for geophysical fluid problems[J]. Reviews of Geophysics & Space Physics, 1982, 20(4):851-875. http://cn.bing.com/academic/profile?id=740f4b2810f3ed6343bbf2067caf8c94&encoded=0&v=paper_preview&mkt=zh-cn
    [23] 翁学传, 王从敏.台湾暖流水的研究[J].海洋科学, 1985, 9(1):7-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Y1070801
    [24] 张文静.长江冲淡水扩展区域低盐水团的数值模拟及动力机制分析[D].山东青岛: 中国海洋大学, 2010.
    [25] 暨卫东.中国近海海洋图集.海洋化学[M].北京:海洋出版社, 2012.
    [26] GEJZ, DING P X, CHEN C S, et al. An integrated East China Sea-Changjiang Estuary model system with aim atresolving multi-scale regional-shelf-estuarine dynamics[J]. Ocean Dynamics, 2013, 63(8):881-900. doi:  10.1007/s10236-013-0631-3
    [27] DEE D P, UPPALA S M, SIMMONS A J, et al. The ERA-Interim reanalysis:Configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137(656):553-597. doi:  10.1002/qj.828
    [28] LOCARNINI R A, MISHONOV A V, ANTONOV J I, et al. World Ocean Atlas 2005 Volume 1: Temperature[R]. NOAA Atlas NESDIS, 2006.
    [29] ANTONOV J, SEIDOV D, BOYER T, et al. World Ocean Atlas 2009, Volume 2: Salinity[R]. Ocean Climate Laboratory, National Oceanographic Data Center, 2010.
    [30] BOYER T P, ANTONOV J I, BARANOVA O, et al. World ocean database 2013[J]. Data Science Journal, 2013, 90(49):153-173. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0233616396/
    [31] BROTAS V, GRANT M, CHUPRIN A, et al. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies[C]//EGU General Assembly, 2014.
    [32] ERM A, ARST H, TREI T, et al. Optical and biological properties of Lake Ülemiste, a water reservoir of the city of Tallinn I:Water transparency and optically active substances in the water[J]. Lakes & Reservoirs Research & Management, 2010, 6(1):63-74.
    [33] REINART A, ARST H, ERM A, et al. Optical and biological properties of Lake Ülemiste, a water reservoir of the city of Tallinn Ⅱ:Light climate in Lake Ülemiste[J]. Lakes & Reservoirs Research & Management, 2010, 6(1):75-84.
    [34] 安琰.东海PN断面及邻近海域温盐及化学要素月季变化特征研究[D].上海: 上海师范大学, 2009.
    [35] 李晓慧, 刘镇盛.长江口及邻近海域浮游动物生物量分布及季节变化[J].海洋学研究, 2017(4):94-101. http://d.old.wanfangdata.com.cn/Periodical/dhhy201704010
    [36] 杨位迪, 郑连明, 李伟巍, 等.长江口邻近海域夏季大中型浮游动物物种多样性、年际变化及其影响因素[J].厦门大学学报(自然科学版), 2018(4):517-525. http://d.old.wanfangdata.com.cn/Periodical/xmdxxb201804012
    [37] 李云.长江口及其邻近海域浮游异养细菌、寡营养细菌、光合细菌的分离鉴定、分布规律及与生态环境因子关系[D].上海: 华东师范大学, 2005.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  84
  • HTML全文浏览量:  72
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-06
  • 刊出日期:  2019-11-25

目录

    /

    返回文章
    返回