中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CrN中原子位移的第一性原理计算研究

王倩倩 赵振杰 李欣 谢文辉

王倩倩, 赵振杰, 李欣, 谢文辉. CrN中原子位移的第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2020, (1): 58-66. doi: 10.3969/j.issn.1000-5641.201922002
引用本文: 王倩倩, 赵振杰, 李欣, 谢文辉. CrN中原子位移的第一性原理计算研究[J]. 华东师范大学学报(自然科学版), 2020, (1): 58-66. doi: 10.3969/j.issn.1000-5641.201922002
WANG Qianqian, ZHAO Zhenjie, LI Xin, XIE Wenhui. Atomic distortion in CrN: A first-principle investigation[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 58-66. doi: 10.3969/j.issn.1000-5641.201922002
Citation: WANG Qianqian, ZHAO Zhenjie, LI Xin, XIE Wenhui. Atomic distortion in CrN: A first-principle investigation[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 58-66. doi: 10.3969/j.issn.1000-5641.201922002

CrN中原子位移的第一性原理计算研究

doi: 10.3969/j.issn.1000-5641.201922002
基金项目: 国家自然科学基金(51572086, 11574084, 11774091)
详细信息
    通讯作者:

    谢文辉, 男, 副教授, 研究方向为计算材料学. E-mail: whxie@phy.ecnu.edu.cn

  • 中图分类号: O411.3

Atomic distortion in CrN: A first-principle investigation

  • 摘要: 采用第一性原理计算方法研究了氮化铬(Chromium Nitride,CrN)的正交(Orthorhombic)相, 发现其中的Cr原子和N原子均沿着正交结构的[100]方向移动, 均偏离其高对称位置, 且在结构中形成锯齿形的原子链, 这个现象在过去的计算研究中一直没有被考虑. 结果表明, 在正交相中, 原子位移可以使总能降低0.125 eV, 因而更加稳定; 考虑原子位移后, 计算得到的晶格长度等结构参数与实验符合得更好;计算得到的体弹性模量 K0 数值明显减小, 更加接近实验值. 正交相的磁基态是层间不对称的反铁磁结构, 原子位移是由正交相中层间不对称的磁应力所驱动, 同时原子位移可以补偿层间的磁相互作用力. 此外, 原子位移不改变CrN的莫特绝缘体特性, 但是会轻微减小带隙.
  • 图  1  AFM2磁构型的正交结构 , 红色箭头表示自旋向上, 绿色箭头表示自旋向下:(a) 没有原子位移的结构; (b) 有原子位移的结构

    Fig.  1  The structure of AFM2 orthorhombic phase, the red arrows represent the spin up and the green arrows represent the spin down, respectively: (a) without atomic distortions and (b) with atomic distortions, respectively

    图  2  CrN的能量曲线与a/b的关系, (a) PBE计算结果, (b) LDA+U (U=3.7 eV, J=0.94 eV)计算结果; AFM2磁构型中原子位移随a/b的变化, (c)PBE计算结果, (d)LDA+U计算结果

    Fig.  2  The total energy of CrN for different a/b ratios and different magnetic states, the results calculated by PBE and LDA+U are shown in (a) and (b), respectively; the atomic distortion values of the AFM2 state of CrN calculated by PBE and LDA+U are shown in (c) and (d), respectively

    图  3  正交相AFM2磁构型的分波态密度(PDOS)的 LDA+U(U=3.7 eV, J=0.94 eV)计算结果:(a)不考虑原子位移的PDOS; (b)考虑原子位移的PDOS

    Fig.  3  The partial density of states (PDOS) of the orthorhombic AFM2 phase calculated with the LDA+U (U=3.7 eV,J=0.94 eV) method: (a) the PDOS of the structure without atomic distortions; (b) the PDOS of the structure with atomic distortions

    图  4  正交相AFM2磁构型的能带结构的LDA+U(U=3.7 eV, J=0.94 eV)计算结果: (a)不考虑原子位移的结果; (b)考虑原子位移的结果

    Fig.  4  The band structure of the orthorhombic AFM2 phase calculated with the LDA+U (U = 3.7 eV, J = 0.94 eV) method: (a) the band structure without atomic distortions; (b) the band structure with atomic distortions

    表  1  正交相中原子位移前后的Cr原子和N原子坐标、晶格常数、原子畸变值( ΔCr/ΔN, 单位为分数坐标), 以及[100]面内Cr-N-Cr的屈曲角度 (U = 3.7 eV, J = 0.94 eV)

    Tab.  1  The atomic coordinates of Cr and N atoms of orthorhombic phase, the lattices constants(Å), the atomic distortion values (in fractional coordinates) and the angles (in degree) of Cr-N-Cr in the [100] plane (U = 3.7 eV, J = 0.94 eV)

    x(a) y(b) z(c) ΔCr/ΔN Cr-N-Cr
    实验值[7] 5.757 2.964 4.134 0.013/0.01 *
    原子位移前
    晶格常数(PBE) 5.672 2.986 4.165
    晶格常数(LDA+U) 5.736 2.962 4.152
    Cr1 0.037 5 0.75 0.75 0 180
    Cr2 0.062 5 0.25 0.25 0 180
    N1 0.037 5 0.75 0.25 0 180
    N2 0.062 5 0.25 0.75 0 180
    原子位移后(PBE)
    晶格常数 5.732 3.001 4.098
    Cr1 0.039 5 0.75 0.75 0.021 167.6
    Cr2 0.060 4 0.25 0.25 0.021 167.6
    N1 0.035 9 0.75 0.25 0.015 167.6
    N2 0.064 1 0.25 0.75 0.015 167.6
    原子位移后(LDA+U)
    晶格常数 5.750 2.971 4.129
    Cr1 0.061 3 0.25 0.25 0.013 171.6
    Cr2 0.038 8 0.75 0.75 0.013 171.6
    N1 0.036 1 0.75 0.25 0.013 171.6
    N2 0.063 9 0.25 0.75 0.013 171.6
    下载: 导出CSV

    表  2  原子位移前后CrN正交相计算得到的弹性模量

    Tab.  2  The bulk modulus K0 of the Orthorhombic phase without atomic distortions and

    K0 /GPa
    PBE LDA+U
    实验值 (190 ± 50) Gpa[24]
    计算值 位移前 255[27] 279
    位移后 239 268
    下载: 导出CSV
  • [1] ZHONG L, LONG Y J, HAN X. Preparation and wear resistance properties of CrN coating by magnetron sputtering on tool surface [J]. Surface Technology, 2018, 47(10): 151-156.
    [2] HANG S, SUN D, FU Y Q, et al. Toughness measurement of thin films: A critical review [J]. Surface & Coatings Technology, 2005, 198(1/2/3): 74-84.
    [3] BROWNE J D, LIDDELL P R, STREET R, et al. An investigation of the antiferromagnetic transition of CrN [J]. Physica Status Solidi A, 1970, 1(4): 715-723.
    [4] CONSTANTIN C, HAIDER M B, INGRAM D, et al. Metal/semiconductor phase transition in chromium nitride(001) grown by rf-plasma-assisted molecular-beam epitaxy [J]. Applied Physics Letters, 2004, 85(26): 6371-6373. DOI:  10.1063/1.1836878.
    [5] GALL D, SHIN C S, HAASCH R T, et al. Band gap in epitaxial NaCl-structure CrN(001) layers [J]. Journal of Applied Physics, 2002, 91(9): 5882-5886. DOI:  10.1063/1.1466528.
    [6] HERLE P S, HEGDE M S, VASATHACHARYA N Y, et al. Synthesis of TiN, VN, and CrN from ammonolysis of TiS2, VS2, and Cr2S3 [J]. Journal of Solid State Chemistry, 1997, 134(1): 120-127. DOI:  10.1006/jssc.1997.7554.
    [7] CORLISS L M, ELLIOTT N, HASTINGS J M. Antiferromagnetic structure of CrN [J]. Physical Review, 1960, 117(4): 929-935.
    [8] FILIPPETTI A, HILL N A. Magnetic stress as a driving force of structural distortions: The case of CrN [J]. Physical Review Letters, 2000, 85(24): 5166-5169. DOI:  10.1103/PhysRevLett.85.5166.
    [9] FILIPPETTI A, PICKETT W E, KLEIN B M. Competition between magnetic and structural transitions in CrN [J]. Physical Review B, 1999, 59(10): 7043-7050. DOI:  10.1103/PhysRevB.59.7043.
    [10] HERWADKAR A, LAMBRECHT W R L. Electronic structure of CrN: A borderline Mott insulator [J]. Physical Review B, 2009, 79(3): 035125. DOI:  10.1103/PhysRevB.79.035125.
    [11] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115-13118. DOI:  10.1103/PhysRevB.48.13115.
    [12] KRESSE G, HAFNER J. Ab initio molecular dynamics for liquid metals [J]. Physical Review B, 1993, 47(1): 558-561. DOI:  10.1103/PhysRevB.47.558.
    [13] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169-11186. DOI:  10.1103/PhysRevB.54.11169.
    [14] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple (vol 77, pg 3865, 1996) [J]. Physical Review Letters, 1997, 78(7): 1396-1396.
    [15] ANISIMOV V I, GUNNARSSON O. Density-functional calculation of effective Coulomb interactions in metals [J]. Physical Review B, 1991, 43(10): 7570-7574. DOI:  10.1103/PhysRevB.43.7570.
    [16] ANISIMOV V I, ZAANEN J, ANDERSEN O K. Band theory and Mott insulators: Hubbard U instead of Stoner I [J]. Physical Review B, 1991, 44(3): 943-954. DOI:  10.1103/PhysRevB.44.943.
    [17] LIECHTENSTEIN A I, ANISIMOV V I, ZAANEN J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators [J]. Physical Review B, 1995, 52(8): R5467-R5470. DOI:  10.1103/PhysRevB.52.R5467.
    [18] PETUKHOV A G, MAZIN I I, CHIONCEL L, et al. Correlated metals and the LDA+U method [J]. Physical Review B, 2003, 67(15): 153106.
    [19] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188-5192. DOI:  10.1103/PhysRevB.13.5188.
    [20] FRANK W, lSASSER C E, FAHNLE M. Ab initio force-constant method for phonon dispersions in alkali metals [J]. Physical Review Letters, 1995, 74(10): 1791-1794. DOI:  10.1103/PhysRevLett.74.1791.
    [21] BLAHA P , SCHWARZ K, MADSEN G K H, et al. WIEN2k: An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (User’s Guide, WIEN2k_14.2(Release 10/15/2014) [M]. Wien, Austria: [s.n.], 2018.
    [22] SCHWARZ K, BLAHA P, MADSEN G K H. Electronic structure calculations of solids using the WIEN2k package for material sciences [J]. Computer Physics Communications, 2002, 147(1/2): 71-76. DOI:  10.1016/S0010-4655(02)00206-0.
    [23] ANDERSEN O K, SAHA-DASGUPTA T. Muffin-tin orbitals of arbitrary order [J]. Physical Review B, 2000, 62(24): 16219-16222. DOI:  10.1103/PhysRevB.62.R16219.
    [24] CHEN H Y, TSAI C J, LU F H. The Young’s modulus of chromium nitride films [J]. Surface & Coatings Technology, 2004, 184(1): 69-73.
    [25] ALLING B, MARTEN T, ABRIKOSOV I A. Questionable collapse of the bulk modulus in CrN [J]. Nature Materials, 2010, 9(4): 283-284. DOI:  10.1038/nmat2722.
    [26] LIN H, ZENG Z. Structural, electronic, and magnetic properties of CrN under high pressure [J]. Chinese Physics B, 2011, 20(7): 077102. DOI:  10.1088/674-1056/20/7/077102.
    [27] RIVADULLA F, BANOBRE-LOPEZ M, QUINTELA C X, et al. Reduction of the bulk modulus at high pressure in CrN [J]. Nature Materials, 2009, 8(12): 947-951. DOI:  10.1038/nmat2549.
    [28] COHEN R E, MAZIN I I, ISAAK D G. Magnetic collapse in transition metal oxides at high pressure: Implications for the Earth [J]. Science, 1997, 275(5300): 654-657. DOI:  10.1126/science.275.5300.654.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  116
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 网络出版日期:  2019-12-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回