中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TiO2纳米管阵列双极光催化燃料电池的应用研究

王剑桥 刘冬 周君 席清华 聂耳 孙卓

王剑桥, 刘冬, 周君, 席清华, 聂耳, 孙卓. TiO2纳米管阵列双极光催化燃料电池的应用研究[J]. 华东师范大学学报(自然科学版), 2020, (1): 93-102. doi: 10.3969/j.issn.1000-5641.201922005
引用本文: 王剑桥, 刘冬, 周君, 席清华, 聂耳, 孙卓. TiO2纳米管阵列双极光催化燃料电池的应用研究[J]. 华东师范大学学报(自然科学版), 2020, (1): 93-102. doi: 10.3969/j.issn.1000-5641.201922005
WANG Jianqiao, LIU dong, ZHOU Jun, XI Qinghua, NIE Er, SUN Zhuo. Application of TiO2 nanotube arrays for bipolar photocatalytic fuel cells[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 93-102. doi: 10.3969/j.issn.1000-5641.201922005
Citation: WANG Jianqiao, LIU dong, ZHOU Jun, XI Qinghua, NIE Er, SUN Zhuo. Application of TiO2 nanotube arrays for bipolar photocatalytic fuel cells[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 93-102. doi: 10.3969/j.issn.1000-5641.201922005

TiO2纳米管阵列双极光催化燃料电池的应用研究

doi: 10.3969/j.issn.1000-5641.201922005
基金项目: 上海浦东新区科技发展基金(PKJ2015-C10);闵行区科技项目(2016MH279)
详细信息
    通讯作者:

    聂 耳, 男, 工程师, 研究方向为材料科学. E-mail: enie@phy.ecnu.edu.cn

    孙 卓, 男, 教授, 研究方向为材料科学. E-mail: zsun@phy.ecnu.edu.cn

  • 中图分类号: O469

Application of TiO2 nanotube arrays for bipolar photocatalytic fuel cells

  • 摘要: 光催化燃料电池技术(Photocatalytic Fuel Cell, PFC)结合了光催化技术与燃料电池技术, 可以同时进行降解废水与发电, 对污水处理具有重要意义. 探索了TiO2纳米管阵列(TiO2 Nanotubes Arrays, TNAs)光阳极制备工艺对其形貌结构的影响; 通过扫描电子显微镜(Field Emission Scanning Electron Microscope, FESEM)证实了电解时间与TNAs管长正相关; 与Cu2O光阴极组合得到的具有更强光催化活性系统证实了 PFC 协同效应的存在, 最佳的电解工艺为4 h, 该工艺制备的电极对双氯酚酸光催化降解率在 2 h内为79%; 对 3 种标准物的分析说明, 在较高的浓度范围内, 通过 PFC 外电路的净电荷量与化学需氧量(Chemical Oxygen Demand, COD)线性相关, 而随着降解进行, 传质过程减弱, 两者之间的相关性减弱.
  • 图  1  PFC反应的原理示意图

    Fig.  1  Schematic illustration of the PFC reaction mechanism for a semiconductor

    图  2  不同电解时间TNAs的FESEM图像及TNAs-4的EDS图谱

    Fig.  2  FESEM images of TNAs with different electrolysis time and EDS mapping of TNAs-4

    图  3  样品TNAs-1的(a) 200 nm (b) 50 nm (c) 5 nm的TEM图和(d) TNAs-1的TEM衍射斑点

    Fig.  3  TEM image of sample TNAs-1 at (a) 200nm (b) 50nm (c) 5nm and (d) TEM diffraction spot of TNAs-1

    图  4  TNAs的XRD图谱

    Fig.  4  XRD patterns of TNAs after anodizing from 0 to 5 h

    图  5  TNAs-4的XPS图谱

    Fig.  5  XPS patterns of TNAs-4

    图  6  (a) TNAs电极、Cu2O电极与TNAs-Cu2O PFC光催化效果; (b) 不同电解时间的TNAs光阳级PFC的降解效率; (c) 不同DCF浓度对TNAs-Cu2O双极PFC的影响; (d)TNAs-Cu2O重复性

    Fig.  6  (a) PFC performance of TNA anode, Cu2O cathode and TNA-Cu2O PFC; (b) PFC performance of TNA-Cu2O PFC with different electrolysis times; (c) PFC performance of TNA-Cu2O PFC with different fuel concentrations; and (d) repeatability of TNAs-Cu2O

    图  7  (a)各浓度DCF的PFC净电荷对比; 各浓度DCF的PFC降解率与净电荷, (b)20 mg/L, (c)40 mg/L, (d) 60 mg/L, (e)80 mg/L, (f)100 mg/L

    Fig.  7  (a) Net charge of PFC with different concentrations of DCF; (b-f) net charge and degradation rate with different concentrations of DCF

    图  8  不同物质的实际COD变化量与理论COD变化量

    Fig.  8  Actual and theoretical changes in COD of different substances

    表  1  不同电解时间下管长、管直径、纳米管的比表面积以及光催化性能

    Tab.  1  The length, diameter, specific surface area, and photocatalytic properties of the nanotubes studied under different electrolysis times

    管长/μm管内径/nm比表面积/(m2·g–1)DCF降解率/%
    TNAs-10.5977178.741
    TNAs-21.284266.452
    TNAs-31.690304.857
    TNAs-42.098340.179
    TNAs-5坍塌坍塌21.225
    下载: 导出CSV
  • [1] GRATZEL M. Photoelectrochemical cells [J]. Nature, 1983, 414(6861): 338-344.
    [2] ANTONIADOU M, KONDARIDES D I, LABOU D, et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes [J]. Solar Energy Materials & Solar Cells, 2010, 94(3): 592-597.
    [3] ANTONIADOU M, KONDARIDES D I, DIONYSIOU D D, et al. Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells [J]. Journal of Physical Chemistry C, 2012, 116(32): 16901-16909. DOI:  10.1021/jp305098m.
    [4] LIU Y, LI J, ZHOU B, et al. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell [J]. Applied Catalysis B Environmental, 2012, 111(6): 485-491.
    [5] LIU Y, LI J, ZHOU B, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell [J]. Water Research, 2011, 45(13): 3991-3998. DOI:  10.1016/j.watres.2011.05.004.
    [6] XIA L, JING B, LI J, et al. A highly efficient BiVO4/WO3/W heterojunction photoanode for visible-light responsive dual photoelectrode photocatalytic fuel cell [J]. Applied Catalysis B Environmental, 2016, 183: 224-230. DOI:  10.1016/j.apcatb.2015.10.050.
    [7] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16547-16555.
    [8] JENNY S, MASAYA M, MASATO T, et al. Understanding TiO2 photocatalysis: mechanisms and materials [J]. Chemical Reviews, 2014, 114(19): 9919-9986. DOI:  10.1021/cr5001892.
    [9] TANG X H, LI D Y. Evaluation of asphaltene degradation on highly ordered TiO2 nanotubular arrays via variations in wettability [J]. Langmuir : the ACS Journal of Surfaces and Colloids, 2011, 27(3): 1218-1223.
    [10] CARNEIRO J T, SAVENIJE T J, MOULIJN J A, et al. Toward a physically sound structure−activity relationship of TiO2-based photocatalysts [J]. Journal of Physical Chemistry C, 2010, 114(1): 327-332. DOI:  10.1021/jp906395w.
    [11] KUANG D, BRILLET J, CHEN P, et al. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells [J]. ACS Nano, 2008, 2(6): 1113-1116. DOI:  10.1021/nn800174y.
    [12] ALBU S P, GHICOV A, MACAK J M, et al. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications [J]. Nano Letters, 2007, 7(5): 1286-1289. DOI:  10.1021/nl070264k.
    [13] HISATOMI T, KUBOTA J, DOMEN K. Cheminform abstract: Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J]. Cheminform, 2014, 43(22): 7520-7535.
    [14] LI B, CAO H, GUI Y, et al. Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors [J]. Journal of Materials Chemistry, 2011, 21(29): 10645-10648. DOI:  10.1039/c1jm12135a.
    [15] MCSHANE C M, CHOI K S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth [J]. Journal of the American Chemical Society, 2013, 131(7): 2561-2569.
    [16] DOMINI C E, HIDALGO M, MARKEN F,et al. Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation [J]. Analytica Chimica Acta, 2006, 569(1): 275-276.
    [17] ZHAO H, JIANG D, ZHANG S, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand [J]. Analytical Chemistry, 2004, 76(1): 155-160.
    [18] LIU Z, ZHANG X, NISHIMOTO S, et al. Highly Ordered TiO2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol [J]. The Journal of Physical Chemistry C, 2008, 112(1): 253-259. DOI:  10.1021/jp0772732.
    [19] HOU X, WANG C W, ZHU W D,et al. Preparation of nitrogen-doped anatase TiO2 nanoworm/nanotube hierarchical structures and its photocatalytic effect [J]. Solid State Sciences, 2014, 29(3): 27-33.
    [20] ZHOU Z Y, WU Z Y, XU Q J, et al. A solar-charged photoelectrochemical wastewater fuel cell for efficient and sustainable hydrogen production [J]. Journal of Materials Chemistry A, 2017, 5:25450-25459.
    [21] LIU L, CHEN X. Titanium Dioxide Nanomaterials: Self-Structural Modifications [J]. Chemical Reviews, 2014, 114(19): 9890-9918. DOI:  10.1021/cr400624r.
    [22] KUMAR S G, RAO K S R K. Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO) [J]. Applied Surface Science, 2017, 391: 124-148. DOI:  10.1016/j.apsusc.2016.07.081.
    [23] FUJISHIMA A, ZHANG X, TRYK D A. TiO photocatalysis and related surface phenomena [J]. Surface Science Reports, 2008, 63(12): 515-582. DOI:  10.1016/j.surfrep.2008.10.001.
    [24] YING D W, CAO R Q, LI C J, et al. Study of the photocurrent in a photocatalytic fuel cell for wastewater treatment and the effects of TiO2 surface morphology to the apportionment of the photocurrent [J]. Electrochimica Acta, 2016, 192: 319-327. DOI:  10.1016/j.electacta.2016.01.210.
    [25] LIAO Q, LI L, CHEN R, et al. Respective electrode potential characteristics of photocatalytic fuel cell with visible-light responsive photoanode and air-breathing cathode [J]. International Journal of Hydrogen Energy, 2015, 40(46): 16547-16555. DOI:  10.1016/j.ijhydene.2015.10.002.
    [26] PROIETTI E, JAOUEN F, LEFÈVRE M, et al. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells [J]. Nature Communications, 2011, 2: Article number 416. DOI:  10.1038/ncomms1427.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  104
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-18
  • 网络出版日期:  2019-12-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回