中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型聚合物半导体薄膜及其场效应晶体管的研究

叶建春 周礼照 李文武 欧阳威

叶建春, 周礼照, 李文武, 欧阳威. 新型聚合物半导体薄膜及其场效应晶体管的研究[J]. 华东师范大学学报(自然科学版), 2020, (1): 83-92. doi: 10.3969/j.issn.1000-5641.201922006
引用本文: 叶建春, 周礼照, 李文武, 欧阳威. 新型聚合物半导体薄膜及其场效应晶体管的研究[J]. 华东师范大学学报(自然科学版), 2020, (1): 83-92. doi: 10.3969/j.issn.1000-5641.201922006
YE Jianchun, ZHOU Lizhao, LI Wenwu, OU-YANG Wei. Novel polymer semiconductor films and related field effect transistor devices[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 83-92. doi: 10.3969/j.issn.1000-5641.201922006
Citation: YE Jianchun, ZHOU Lizhao, LI Wenwu, OU-YANG Wei. Novel polymer semiconductor films and related field effect transistor devices[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 83-92. doi: 10.3969/j.issn.1000-5641.201922006

新型聚合物半导体薄膜及其场效应晶体管的研究

doi: 10.3969/j.issn.1000-5641.201922006
基金项目: 国家自然科学基金( 61504042,61771198); 上海市自然科学基金(17ZR1447000); 中央高校基本科研业务费专项资金
详细信息
    通讯作者:

    欧阳威, 男, 副教授, 硕士生导师, 研究方向为纳米材料与器件. E-mail: ouyangwei@phy.ecnu.edu.cn

  • 中图分类号: O472+.4

Novel polymer semiconductor films and related field effect transistor devices

  • 摘要: 以新型的有机聚合物半导体(DPPTTT(poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione) thieno [3,2-b] thiophene))为研究对象, 利用溶液法制备了有机半导体薄膜并进行了一系列表征. 发现半导体薄膜的厚度、表面粗糙度和拉曼峰强度均随溶液浓度和转速呈规律性变化. 以该材料作为半导体活性层制备了 p 型有机场效应晶体管, 发现当沟道长度降低到50 μm时, 器件的有效载流子迁移率最高, 达到0.12 cm2/Vs; 同时观察到随着沟道长度的降低, 载流子迁移率与阈值电压都有增大的趋势, 这与普遍观察到的短沟道效应相反. 这些研究内容或许可以为更好地理解有机场效应晶体管及器件物理提供新的观点.
  • 图  1  器件结构和DPPTTT的分子结构式,沟道宽度(W)为1 000 μm, 沟道长度(L) 为 50~300 μm

    Fig.  1  The schemed structure of the device and the constitutional molecular structure of DPPTTT, the channel width (W) is 1 000 μm and the channel length (L) is 50~300 μm

    图  2  不同工艺参数下得到的有机半导体薄膜的表面SEM图: (a) 样品浓度为10 mg/mL, 转速为2 000 r/min; (b) 样品浓度为10 mg/mL, 转速为4 000 r/min

    Fig.  2  SEM top views of organic semiconductor thin films with various deposition parameters: (a) Solution concentration of 10 mg/mL, rotation rate of 2 000 r/min; (b) solution concentration of 10 mg/mL, rotation rate of 4 000 r/min

    图  3  BCB薄膜和不同工艺参数下得到的有机半导体薄膜的AFM图: (a) 转速为2 000 r/min的BCB薄膜; (b) 样品浓度为10 mg/mL, 转速为2 000 r/min; (c) 样品浓度为10 mg/mL, 转速为4 000 r/min;(d) 样品浓度为5 mg/mL, 转速为2 000 r/min; (e) 样品浓度为5 mg/mL, 转速为4 000 r/min; (f) 样品浓度为5 mg/mL, 转速为8 000 r/min

    Fig.  3  AFM graphs of BCB thin films and DPPTTT thin films with various parameters: (a) BCB thin film made by 2 000 r/min; (b) solution concentration of 10 mg/mL, rotation rate of 2 000 r/min; (c) solution concentration of 10 mg/mL, rotation rate of 4 000 r/min; (d) solution concentration of 5 mg/mL, rotation rate of 2 000 r/min; (e) solution concentration of 5 mg/mL, rotation rate of 4 000 r/min; (f ) solution concentration of 5 mg/mL, rotation rate of 8 000 r/min

    图  4  不同溶液浓度和转速下得到的DPPTTT薄膜粗糙度的比较

    Fig.  4  Roughness of DPPTTT thin films deposited by various solution concentrations and rotation rates

    图  5  不同工艺参数下得到的有机半导体薄膜的侧面SEM图: (a) 样品浓度为10mg/mL, 转速为2 000 r/min; (b) 样品浓度为10 mg/mL, 转速为2 000 r/min; (c) 样品浓度为5mg/mL, 转速为2 000 r/min

    Fig.  5  SEM side views of organic semiconductor thin films with various deposition parameters: (a) solution concentration of 10 mg/mL, rotation rate of 2 000 r/min; (b) solution concentration of 10 mg/mL, rotation rate of 4 000 r/min; (c) solution concentration of 5 mg/mL, rotation rate of 2 000 r/min

    图  6  DPPTTT薄膜厚度与浓度和转速的关系图

    Fig.  6  The thickness of DPPTTT thin films with respective to various concentrations and rotation rates

    图  7  氧化硅片衬底、BCB薄膜和不同工艺参数下得到的DPPTTT薄膜的拉曼散射谱图

    Fig.  7  Raman spectrum of Si/SiO2, BCB thin film, and DPPTTT thin films with various deposition parameters

    图  8  不同沟道长度的器件的转移特性曲线(L = 50 ~ 300 μm): (a) 源漏电流绝对值(对数坐标)关于栅源电压的变化曲线; (b) 源漏电流的平方根($\sqrt {{I_{{\rm{DS}}}}} $)关于栅源电压的变化曲线

    Fig.  8  Transfer characteristics of devices with various channel lengths from 50 to 300 μm: (a) absolute drain current in logarithmic scale versus gate voltage; (b) square root of drain current ($\sqrt {{I_{{\rm{DS}}}}} $) versus gate voltage

    图  9  场效应迁移率和阈值电压随沟道长度的变化关系, 沟道宽度为1 000 μm

    Fig.  9  Field effect mobility (μ FE) and threshold voltage (V th) as a relationship of channel length (L); the channel width (W) is 1 000 μm and the channel length (L) is 50~300 μm

    图  10  亚阈值摆幅SS和缺陷密度 N 随沟道长度的变化关系, 沟道长度L = 50 ~ 300 μm

    Fig.  10  Subthreshold swing (SS) and interface trap density N as a function of channel length, the channel length L is from 50 μm to 300 μm.

    表  1  不同参数下得到的DPPTTT薄膜的拉曼位移和拉曼峰强度

    Tab.  1  Raman shift and peak intensity of DPPTTT thin films with various deposition parameters

    样品拉曼位移/cm–1拉曼峰强度
    DPPTTT-10 mg/mL-BCB-2 000 r/min1 5501 034
    DPPTTT-10 mg/mL-BCB-4 000 r/min1 5471 455
    DPPTTT-5 mg/mL-2 000 r/min1 546425
    DPPTTT-5 mg/mL-4 000 r/min1 549287
    DPPTTT-5 mg/mL-8 000 r/min1 545243
    下载: 导出CSV
  • [1] OU-YANG W, WEIS M, LEE K,et al. Function of interfacial dipole monolayer in organic field effect transistors [J]. Japanese Journal of Applied Physics, 2011, 50(4S): 04DK10-6. DOI:  10.7567/JJAP.50.04DK10.
    [2] CHEN M, ZHU Y N,YAO C,et al. Intrinsic charge carrier mobility in single-crystal OFET by “fast trapping vs. slow detrapping” model [J]. Organic Electronics, 2018, 54: 237-244. DOI:  10.1016/j.orgel.2017.12.042.
    [3] JI J J, ZHOU D G,TANG Y,et al. Partially removing long branched alkyl side chains of regioregular conjugated backbone based diketopyrrolopyrrole polymer for improving field-effect mobility [J]. Journal of Materials Chemistry C, 2018, 6: 13325-13330. DOI:  10.1039/C8TC04954H.
    [4] OU-YANG W, WEIS M,TAGUCHI D,et al. Modeling of threshold voltage in pentacene organic field-effect transistors [J]. Journal of Applied Physics, 2010, 107(12): 124506. DOI:  10.1063/1.3449078.
    [5] WANG R, GUO Y K,ZHANG D,et al. Improved electron transport with reduced contact resistance in N-doped polymer field-effect transistors with a dimeric dopant [J]. Macromol. Rapid Commun, 2018, 39(14): 1700726. DOI:  10.1002/marc.201700726.
    [6] TEIXEIRA DA ROCHA C, HAASE K,ZHENG Y C,et al. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High-Mobility Organic Transistors [J]. Adv Electron Mater, 2018, 4(8): 1800141. DOI:  10.1002/aelm.201800141.
    [7] OU-YANG W, WEIS M,MANAKA T,et al. Effect of an upward and downward interface dipole langmuir-blodgett monolayer on pentacene organic field-effect transistors: A comparison study [J]. Japanese Journal of Applied Physics, 2012, 51(2R): 024102-5. DOI:  10.7567/JJAP.51.024102.
    [8] THUAU D, ABBAS M, WANTZ G, et al. Mechanical strain induced changes in electrical characteristics of flexible, non-volatile ferroelectric OFET based memory [J]. Organic Electronics, 2017, 40: 30-35. DOI:  10.1016/j.orgel.2016.10.036.
    [9] GAO X, DUAN S M, LI J F,et al. Deposition rate related DPA OFET threshold voltage shift and hysteresis variation [J]. Journal of Materials Chemistry C, 2018, 6: 12498-12502. DOI:  10.1039/C8TC05327H.
    [10] NAKAYAMA K, OU-YANG W,UNO M,et al. Flexible air-stable three-dimensional polymer field-effect transistors with high output current density [J]. Organic Electronics, 2013, 14: 2908-2915. DOI:  10.1016/j.orgel.2013.08.002.
    [11] LI J, OU-YANG W, WEIS M, et al. Electric-field enhanced thermionic emission model for carrier injection mechanism of organic field-effect transistors: understanding of contact resistance [J]. Journal of Physics D : Applied Physics , 2017, 50(2): 035101. DOI:  10.1088/1361-6463/aa4e95.
    [12] UEMURA T, ROLIN C, KE T H, et al. On the extraction of charge carrier mobility in high-mobility organic transistors [J]. Advanced Materials, 2016, 28(1): 151-155. DOI:  10.1002/adma.201503133.
    [13] CHOI H H, CHO K, SIRRINGHAUS H, et al. Critical assessment of charge mobility extraction in FETs [J]. Nature materials, 2018, 17(1): 2-7. DOI:  10.1038/nmat5035.
    [14] NIKOLKA M, NASRALLAH I, ROSE B, et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives [J]. Nature Mater, 2017, 16: 356-361. DOI:  10.1038/nmat4785.
    [15] FARAJI S, DANESH E, TATE D J, et al. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs) [J]. Journal of Physics D: Applied Physics, 2016, 49(18): 185102.
    [16] ZHANG W M, SMITH J, WATKINS S E, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors [J]. Journal of the American Chemical Society, 2010, 132(33): 11437-11439. DOI:  10.1021/ja1049324.
    [17] NIKOLKA M, SCHWEICHER G, ARMITAGE J, et al. Performance improvements in conjugated polymer devices by removal of water-induced traps [J]. Advanced Materials, 2018, 30(36): 1801874. DOI:  10.1002/adma.201801874.
    [18] LI Y N, SINGH S P, SONAR P. A high mobility P-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors [J]. Advanced Materials, 2010, 22(43): 4862-4866. DOI:  10.1002/adma.201002313.
    [19] ZHOU N J, VEGIRAJU S, YU X G, et al. Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells [J]. Journal of Materials Chemistry C, 2015, 3(34): 8932-8941. DOI:  10.1039/C5TC01348H.
    [20] LI Y N, SONAR P, MURPHY L, et al. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics [J]. Energy & Environmental Science, 2013, 6: 1684-1710. DOI:  10.1039/c3ee00015j.
    [21] COUTO R, CHAMBON S, AYMONIER C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly-(3-hexylthiophene) nanoparticles for OFET devices [J]. Chemical Communications, 2015, 51(6): 1008-1011. DOI:  10.1039/C4CC07878K.
    [22] CHIANESE F, CANDINI A, AFFRONTE M, et al. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes [J]. Applied Physics Letters, 2018, 112(21): 213301. DOI:  10.1063/1.5023659.
    [23] VASIMALLA S, SUBBARAO N V V, GEDDA M, et al. Effects of dielectric material, HMDS layer, and channel length on the performance of the perylenediimide-based organic field-effect transistors [J]. ACS Omega, 2017, 2: 2552-2560. DOI:  10.1021/acsomega.7b00374.
    [24] LEOBANDUNG E, GU J, GUO L J,et al. Wire-channel and wrap-around-gate metal–oxide–semiconductor field-effect transistors with a significant reduction of short channel effects [J]. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, 1997, 15(6): 2791-2794. DOI:  10.1116/1.589729.
    [25] RAY B, MAHAPATRA S. Modeling of Channel Potential and Subthreshold Slope of Symmetric double-gate transistor [J]. IEEE Transactions on Electron Devices, 2009, 56(2): 260-264. DOI:  10.1109/TED.2008.2010577.
    [26] PRETET J, MONFRAY S, CRISTOLOVEANU S,et al. Silicon-on-nothing MOSFETs: Performance, short-channel effects, and backgate coupling [J]. IEEE Transactions on Electron Devices, 2004, 51(2): 240-244. DOI:  10.1109/TED.2003.822226.
    [27] HU Y Y, LI G D, CHEN Z J. The importance of contact resistance in high-mobility organic field-effect transistors studied by scanning kelvin probe microscopy [J]. IEEE Electron Device Letters, 2018, 39(2): 276-279. DOI:  10.1109/LED.2017.2781301.
    [28] CHOI S, FUENTES-HERNANDEZ C,WANG C Y,et al. A Study on reducing contact resistance in solution-processed organic field-effect transistors [J]. ACS Applied Material and Interfaces, 2016, 8(37): 24744-24752. DOI:  10.1021/acsami.6b07029.
    [29] WADA H, SHIBATA K, BANDO Y,et al. Contact resistance and electrode material dependence of air-stable n-channel organic field-effect transistors using dimethyldicyanoquinonediimine (DMDCNQI) [J]. Journal of Materials Chemistry, 2008, 18(35): 4165-4171. DOI:  10.1039/b808435a.
    [30] OU-YANG W, MANAKA T, NAITOU S,et al. Optical second-harmonic generation in hydrogenated amorphous silicon single- and double-junction solar cells [J]. Japanese Journal of Applied Physics , 2012, 51(7R): 070209-.
    [31] OU-YANG W, MITOMA N,KIZU T,et al. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors [J]. Applied Physics Letters, 2014, 105(16): 163503. DOI:  10.1063/1.4898815.
    [32] RAJEEV K P, OPOKU C,STOLOJAN V,et al. Effect of nanowire-dielectric interface on the hysteresis of solution processed silicon nanowire FETs [J]. Nanoscience and Nanoengineering, 2017, 5(2): 17-24. DOI:  10.13189/nn.2017.050201.
    [33] HEKMATSHOAR B. Thin-film silicon heterojunction FETs for large area and flexible electronics: Design parameters and reliability [J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3524-3529. DOI:  11.1109/TED.2015.2463721.
    [34] GAO X, LIN M M,MAO B H,et al. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors [J]. Journal of Physics D: Applied Physics, 2017, 50(2): 025102. DOI:  10.1088/1361-6463/50/2/025102.
    [35] MITOMA N, AIKAWA S,OU-YANG W,et al. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants [J]. Applied Physics Letters, 2015, 106(4): 042106. DOI:  10.1063/1.4907285.
    [36] LIN M F, GAO X, MITOMA N,et al. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process [J]. AIP Advances, 2015, 5(1): 017116. DOI:  10.1063/1.4905903.
    [37] SALYK O, VYŇUCHAL J,HORÁČKOVÁ P,et al. Structure and Raman spectra of pyridyl substituted diketo-pyrrolo-pyrrole isomers and polymorphs [J]. Journal of Molecular Structure, 2010, 983(1/2/3): 39-47. DOI:  10.1016/j.molstruc.2010.08.026.
    [38] CALVO-CASTRO J, WARZECHA M,MCLEAN A J,et al. Impact of substituent effects on the Raman spectra of structurally related N-substituted diketopyrrolopyrroles [J]. Vibrational Spectroscopy, 2016, 83: 8-16. DOI:  10.1016/j.vibspec.2015.12.004.
    [39] YANG J W, FOSSUM J G. On the feasibility of nanoscale triple-gate CMOS transistors [J]. IEEE Transactions on Electron Devices, 2005, 52(6): 1159-1163. DOI:  10.1109/TED.2005.848109.
    [40] MATSUMOTO T, OU-YANG W,MIYAKE K,et al. Study of contact resistance of high-mobility organic transistors through comparison [J]. Organic Electronics, 2013, 14(10): 2590-2595. DOI:  10.1016/j.orgel.2013.06.032.
    [41] OU-YANG W, UEMURA T, MIYAKE K, et al. High-performance organic transistors with high-k dielectrics: A comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene [J]. Applied Physics Letters, 2012, 101(16): 223304. DOI:  10.1063/1.4769436.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  57
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-19
  • 网络出版日期:  2019-12-25
  • 刊出日期:  2020-01-01

目录

    /

    返回文章
    返回