中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洛伦兹对称破缺与宇宙加速膨胀

翟韩豫 薛迅

翟韩豫, 薛迅. 洛伦兹对称破缺与宇宙加速膨胀[J]. 华东师范大学学报(自然科学版), 2020, (2): 83-89. doi: 10.3969/j.issn.1000-5641.201922011
引用本文: 翟韩豫, 薛迅. 洛伦兹对称破缺与宇宙加速膨胀[J]. 华东师范大学学报(自然科学版), 2020, (2): 83-89. doi: 10.3969/j.issn.1000-5641.201922011
ZHAI Hanyu, XUE Xun. Lorentz symmetry violation and accelerated expansion of the universe[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 83-89. doi: 10.3969/j.issn.1000-5641.201922011
Citation: ZHAI Hanyu, XUE Xun. Lorentz symmetry violation and accelerated expansion of the universe[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 83-89. doi: 10.3969/j.issn.1000-5641.201922011

洛伦兹对称破缺与宇宙加速膨胀

doi: 10.3969/j.issn.1000-5641.201922011
基金项目: 国家自然科学基金(11435005, 11775080, 11865016)
详细信息
    通讯作者:

    薛 迅, 男, 教授, 博士生导师, 研究方向为粒子物理与场论. E-mail: xxue@phy.ecnu.edu.cn

  • 中图分类号: O413.4

Lorentz symmetry violation and accelerated expansion of the universe

  • 摘要: 1998年的超新星观测表明当今宇宙正在加速膨胀. 暗能量是指宇宙加速膨胀的宇宙介质. 正的宇宙学常数Λ是暗能量的重要候选者, 但导致宇宙加速膨胀的原因并非Λ莫属. 洛伦兹不变性是物理学最严格的对称性之一, 然而所有的量子引力理论都预言了洛伦兹对称性的破缺. 基于大尺度洛伦兹破缺(Large-Scale Lorentz Violation, LSLV)的宇宙学模型, 讨论了有效引力理论修正的Friedmann方程, 由此可以得到, 大尺度上的洛伦兹破缺和宇宙学常数项的综合效应会产生后期观测到的宇宙加速膨胀.
  • 图  1  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \frac{{\Lambda - {\Lambda _0}}}{{3{H_0^2}}}} - 1} \right)$, 当${\Lambda _0}$取不同值时哈勃常数随宇宙时的演化

    Fig.  1  ${\cal{K}}\left( {{t_0}} \right) = {H_0}\left( {\sqrt {1 - \frac{{\Lambda - {\Lambda _0}}}{{3{H_0^2}}}} - 1} \right)$, the Hubble constant evolves with time when ${\Lambda _0}$ takes different values

    图  2  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \frac{{\Lambda - {\Lambda _0}}}{{3{H_0^2}}}} {\rm{ + }}1} \right)$, 当${\Lambda _0}$取不同值时哈勃常数随宇宙时的演化

    Fig.  2  ${\cal{K}}\left( {{t_0}} \right) = - {H_0}\left( {\sqrt {1 - \frac{{\Lambda - {\Lambda _0}}}{{3{H_0^2}}}} {\rm{ + }}1} \right)$, the Hubble constant evolves with time when ${\Lambda _0}$ takes different values

  • [1] FILIPPENKO A V, RIESS A G. Results from the high-z supernova search team [J]. Physics Reports, 1998, 307(1/2/3/4): 31-44.
    [2] RIESS A G, FILIPPENKO A V, CHALLIS P, et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant [J]. The Astronomical Journal, 1998, 116(3): 1009-1038. DOI:  10.1086/300499.
    [3] PERLMUTTER S, ALDERING G, GOLDHABER G, et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae [J]. The Astrophysical Journal, 1999, 517(2): 565-586.
    [4] ADE P A R, AGHANIM N, ARMITAGE-CAPLAN C, et al. Planck 2013 results. XXIII. Isotropy and statistics of the CMB [J]. Astronomy and Astrophysics, 2014, 571: Article number A23. DOI:  10.1051/0004-6361/201321534.
    [5] ADE P A R, AGHANIM N, ALVES M I R, et al. Planck 2013 results. I. Overview of products and scientific results [J]. Astronomy and Astrophysics, 2014, 571: Article number A1. DOI:  10.1051/0004-6361/201321529.
    [6] FRANCIS M. First Planck results: the Universe is still weird and interesting[R/OL]. (2013-03-22)[2019-04-21]. https://arstechnica.com/science/2013/03/first-planck-results-the-universe-is-still-weird-and-interesting.
    [7] COLEMAN S R, GLASHOW S L. High-energy tests of Lorentz invariance [J]. Physics Review D, 1999, 59: 116008. DOI:  10.1103/PhysRevD.59.116008.
    [8] COLLADAY D, KOSTELECKY V A. Lorentz-violating extension of the standard model [J]. Physics Review D, 1998, 58: 116002. DOI:  10.1103/PhysRevD.58.116002.
    [9] SHEN J Y, XUE X. Large scale Lorentz violation gravity and dark energy [J/OL]. arXiv, 2018:1802.03502.(2018-10-13)[2019-04-21]. https://arxiv.org/abs/1802.03502.
    [10] WU Y W, XUE X, YANG L X, et al. The effective gravitational theory at large scale with Lorentz violation [J/OL]. arXiv, 2015: 1510.00814. (2015-10-18)[2019-04-21]. https://arxiv.org/abs/1510.00814.
    [11] 魏文叶, 申佳音, 薛迅, 等. 大尺度有效引力的规范引力模型 [J]. 物理学报, 2017, 66: 130301. DOI:  10.7498/aps.66.130301.
    [12] 杨礼想, 吴奕暐, 魏文叶, 等. 大尺度有效引力理论与洛伦兹破缺 [J]. 科学通报, 2017, 62(9): 944-950.
    [13] 吴奕暐, 薛迅. SIM(2)引力规范理论 [J]. 华东师范大学学报 (自然科学版), 2016(3): 76-83.
    [14] DESER S, WOODARD R P. Nonlocal cosmology II—Cosmic acceleration without fine tuning or dark energy [J/OL]. arXiv, 2019: 1902.08075.(2019-02-21)[2019-05-01]. https://arxiv.org/abs/1902.08075.
    [15] RAJVANSHI M P, CHAKRABORTY T, BAGLA J S. Gravitational collapse and structure formation in an expanding universe with dark energy [J/OL]. arXiv, 2019:1803.04267.(2019-01-13)[2019-05-01]. https://arxiv.org/abs/1803.04267.
    [16] DINDA B R. A model independent parametrization of the late time cosmic acceleration: constraints on the parameters from recent observations [J/OL]. arXiv, 2018: 1904.10418.(2018-04-23)[2019-05-01]. https://arxiv.org/abs/190410418.//arxiv.org/abs/190410418.
    [17] DIMOPOULOS K, MARKKANEN T. Dark energy as a remnant of inflation and electroweak symmetry breaking [J/OL]. arXiv, 2018: 1807.04359. (2018-12-04)[2019-05-01]. https://arxiv.org/abs/1807.04359.
    [18] DIMAKIS N, PALIATHANASIS A, TERZIS P A, et al. Cosmological solutions in multiscalar field theory [J/OL]. arXiv, 2019: 1904.09713.(2019-04-22)[2019-05-01].https://arxiv.org/abs/1904.09713.
    [19] ZHANG H C, XU L X. Late-time acceleration and inflation in a Poincaré gauge cosmological model [J/OL]. arXiv, 2019: 1904.03545.(2019-04-09)[2019-05-01]. https://arxiv.org/abs/1904.03545.
  • 加载中
图(2)
计量
  • 文章访问数:  278
  • HTML全文浏览量:  99
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回