中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紧聚焦混合阶庞加莱光的自旋密度

孙宏 董光炯

孙宏, 董光炯. 紧聚焦混合阶庞加莱光的自旋密度[J]. 华东师范大学学报(自然科学版), 2020, (2): 70-75. doi: 10.3969/j.issn.1000-5641.201922012
引用本文: 孙宏, 董光炯. 紧聚焦混合阶庞加莱光的自旋密度[J]. 华东师范大学学报(自然科学版), 2020, (2): 70-75. doi: 10.3969/j.issn.1000-5641.201922012
SUN Hong, DONG Guangjiong. Spin density of tightly focused hybrid-order Poincaré beams[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 70-75. doi: 10.3969/j.issn.1000-5641.201922012
Citation: SUN Hong, DONG Guangjiong. Spin density of tightly focused hybrid-order Poincaré beams[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 70-75. doi: 10.3969/j.issn.1000-5641.201922012

紧聚焦混合阶庞加莱光的自旋密度

doi: 10.3969/j.issn.1000-5641.201922012
基金项目: 国家自然科学基金(11574085, 91536218, 11834003); 上海市教委科研创新计划(2019-01-07-00-05-E00079)
详细信息
    通讯作者:

    董光炯, 男, 教授, 博士生导师, 研究方向为量子光学. E-mail: gjdong@phy.ecnu.edu.cn

  • 中图分类号: O436.1

Spin density of tightly focused hybrid-order Poincaré beams

  • 摘要: 庞加莱光自旋密度分布的研究不仅有着实际的工程应用意义, 还对认识光的本性有着重要的意义. 研究了紧聚焦的混合阶庞加莱光的自旋密度, 发现它不仅有横向分量, 还有纵向分量; 与最近的研究总纵向自旋为零的紧聚焦满庞加莱光束不同, 其纵向总自旋不等于零. 紧聚焦的混合阶庞加莱光的自旋密度具有丰富的可调控的空间斑图, 特别是纵向自旋密度可以是环形, 还可以是正多边形等. 这些特征可用于手性微粒的光力学分离和操控, 也可用于产生等效磁场操控超冷旋量原子气体动力学.
  • 图  1  一混合阶庞加莱光入射到一个高数值孔径的透镜, 在焦平面得到紧聚焦庞加莱光

    Fig.  1  A hybrid order Poincaré beams is incident on a lens with a high numerical aperture, at the focal plane, a tightly focused Poincaré optical field can be generated

    图  2  $m = n$时, 焦平面处自旋密度${{S}}$的3个分量${{{S}}_x}$,${{{S}}_y}$,${{{S}}_z}$的空间分布

    Fig.  2  Spatial distribution of three components of the spin density S at the focal plan, ${{{S}}_x}$, ${{{S}}_y}$, ${{{S}}_z}$ for the case $m = n$

    图  3  m n 时, 焦平面处自旋密度$S $的3个分量${{{S}}_x}$,${{{S}}_y}$,${{{S}}_z}$的空间分布

    Fig.  3  Spatial distribution of three components of the spin density S at the focal plan, ${{{S}}_x}$, ${{{S}}_y}$, ${{{S}}_z}$ for the case $m \ne n$

    图  4  $m = - 5,n = - 7$时, 不同数值孔径 (${\rm{NA}} $)条件下, 焦平面处自旋密度 S 的3个分量${{{S}}_x}$,${{{S}}_y}$,${{{S}}_z}$的空间分布

    Fig.  4  Spatial distribution of three components of the spin density S at the focal plan${{{S}}_x}$, ${{{S}}_y}$, ${{{S}}_z}$ for the case$m = - 5,n = - 7$ with different numerical aperture values (${\rm{NA}} $)

  • [1] POINCARÉ H. Leçons sur la théorie mathématique de la lumière. Théorie mathématique de la lumière. II, Nouvellesétudes sur la diffraction, théorie de la dispersion de Helmholtz: Leçons professées pendant le premier semestre 1891-1892 [R]. [S.l.]: LAMOTTE M, HURMUZESCU D, 1892.
    [2] BORN M, WOLF E. Principles of Optics[M]. 6th ed. New York: Pergamon Press, 1980.
    [3] HOLBOURN A H S. Angular momentum of circularly polarised light [J]. Nature, 1936, 137(3453): 31. DOI:  10.1038/137031a0.
    [4] YAO A M, PADGETT M J. Orbital angular momentum: Origins, behavior and applications [J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. DOI: 10.1364/AOP.3.000161.
    [5] MILIONE G, SZTUL H I, NOLAN D A, et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light [J]. Physical Review Letters, 2011, 107(5): 053601. DOI:  10.1103/PhysRevLett.107.053601.
    [6] YI X N, LIU Y C, LING X H, et al. Hybrid-order Poincaré sphere [J]. Physical Review A, 2015, 91(2): 023801. DOI:  10.1103/PhysRevA.91.023801.
    [7] GU M. Advanced Optical Imaging Theory [M]. Heidelberg: Springer, 2006.
    [8] WOLF E. Electromagnetic diffraction in optical systems-I. An integral representation of the image field [J]. Proceedings of the Royal Society A, 1959, 253(1274): 349-357. DOI:  10.1098/rspa.1959.0199.
    [9] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems, II. Structure of the image field in an aplanatic system [J]. Proceedings of the Royal Society A, 1959, 253(1274): 358-379. DOI:  10.1098/rspa.1959.0200.
    [10] EHMKE T, NITZSCHE T H, KNEBL A, et al. Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light [J]. Biomedical Optics Express, 2014, 5(7): 2231-2246. DOI:  10.1364/BOE.5.002231.
    [11] BEKSHAEV A Y. Corrigendum: Subwavelength particles in an inhomogeneous light field: optical forces associated with the spin and orbital energy flows [J]. Journal of Optics, 2016, 18(2): 029501. DOI: 10.1088/2040-8978/18/2/029501.
    [12] DAI X B, LI Y Q, LIU L H . Tight focusing properties of hybrid-order Poincaré sphere beams [J]. Optics Communications, 2018, 426: 46-53. DOI:  10.1016/j.optcom.2018.05.017.
    [13] LERMAN G, STERN L, LEVY U. Generation and tight focusing of hybridly polarized vector beams [J]. Optics Express, 2010, 18(26): 27650-7. DOI:  10.1364/OE.18.027650.
    [14] CHEN R, AGARWAL K, SHEPPARD C J, et al. Imaging using cylindrical vector beams in a high-numerical-aperture microscopy system [J]. Optics Letters, 2013, 38(16): 3111-3114. DOI:  10.1364/OL.38.003111.
    [15] JESACHER A, FÜRHAPTER S, BERNET S, et al. Size selective trapping with optical “cogwheel” tweezers [J]. Optics Express, 2004, 12(17): 4129-4135. DOI:  10.1364/OPEX.12.004129.
    [16] HNATOVSKY C, SHVEDOV V, KROLIKOWSKI W, et al. Revealing local field structure of focused ultrashort pulses [J]. Physical Review Letters, 2011, 106(12): 123901. DOI:  10.1103/PhysRevLett.106.123901.
    [17] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes [J]. Physical Review A, 1992, 45(11): 8185. DOI:  10.1103/PhysRevA.45.8185.
    [18] ALLEN L, PADGETT M J, BABIKER M. IV The orbital angular momentum of light [J]. Progress in Optics, 1999, 39(C): 291-372. DOI: 10.1016/S0079-6638(08)70391-3.
    [19] ZHAO Y, EDGAR J S, JEFFRIES G D, MCGLOIN D, & CHIU D T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam [J]. Physical Review Letters, 2007, 99(7): 073901. DOI:  10.1103/PhysRevLett.99.073901.
    [20] BEKSHAEV A Y, SOSKIN M S, VASNETSOV M V. Transformation of higher-order optical vortices upon focusing by an astigmatic lens [J]. Optics Communications, 2004, 241(4/5/6): 237-247. DOI:  10.1016/j.optcom.2004.07.023.
    [21] AIELLO A, BANZER P, NEUGEBAUER M, et al. From transverse angular momentum to photonic wheels [J]. Nature Photonics, 2015, 9(12): 789-795. DOI:  10.1038/nphoton.2015.203.
    [22] ZHU W, SHVEDOV V, SHE W, et al. Transverse spin angular momentum of tightly focused full Poincaré beams [J]. Optics express, 2015, 23(26): 34029-34041. DOI:  10.1364/OE.23.034029.
    [23] BRADSHAW D S, ANDREWS D L. Chiral discrimination in optical trapping and manipulation [J]. New Journal of Physics, 2014, 16(10): 103021. DOI:  10.1088/1367-2630/16/10/103021.
    [24] LE KIEN F, SCHNEEWEISS P, RAUSCHENBEUTEL A. Dynamical polarizability of atoms in arbitrary light fields: General theory and application to cesium [J]. The European Physical Journal D, 2013, 67 Article number: 92. DOI:  10.1140/epjd/e2013-30729-x.
    [25] DING K, NG J, ZHOU L, et al. Realization of optical pulling forces using chirality [J]. Physical Review A, 2014, 89(6): 063825. DOI:  10.1103/PhysRevA.89.063825.
    [26] WEYRAUCH M, RAKOV M V. Dimerization in ultracold spinor gases with Zeeman splitting [J]. Physical Review B , 2017, 96: 134404. DOI:  10.1103/PhysRevB.96.134404.
  • 加载中
图(4)
计量
  • 文章访问数:  200
  • HTML全文浏览量:  133
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-02
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回