中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷分子静电曲面反射镜

李静 杨正海 侯顺永 魏斌 林钦宁 杨涛 印建平

李静, 杨正海, 侯顺永, 魏斌, 林钦宁, 杨涛, 印建平. 冷分子静电曲面反射镜[J]. 华东师范大学学报(自然科学版), 2020, (2): 64-69. doi: 10.3969/j.issn.1000-5641.201922014
引用本文: 李静, 杨正海, 侯顺永, 魏斌, 林钦宁, 杨涛, 印建平. 冷分子静电曲面反射镜[J]. 华东师范大学学报(自然科学版), 2020, (2): 64-69. doi: 10.3969/j.issn.1000-5641.201922014
LI Jing, YANG Zhenghai, HOU Shunyong, WEI Bin, LIN Qinning, YANG Tao, YIN Jianping. Electrostatic curved mirror of cold molecules[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 64-69. doi: 10.3969/j.issn.1000-5641.201922014
Citation: LI Jing, YANG Zhenghai, HOU Shunyong, WEI Bin, LIN Qinning, YANG Tao, YIN Jianping. Electrostatic curved mirror of cold molecules[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 64-69. doi: 10.3969/j.issn.1000-5641.201922014

冷分子静电曲面反射镜

doi: 10.3969/j.issn.1000-5641.201922014
基金项目: 国家自然科学基金(91536218, 11034002, 11274114, 11504112, 11874151); 国家重点基础研究发展计划(2011CB921602); 中央高校基本科研基金; 上海市浦江人才计划(18PJ1403100); 上海市自然科学基金 (18ZR1412700); 上海高校特聘教授(东方学者)岗位计划
详细信息
    通讯作者:

    侯顺永, 男, 助理研究员, 研究方向为原子分子光学、冷分子制备与操控. E-mail: syhou@phy.ecnu.edu.cn

    印建平, 男, 研究员, 博士生导师, 研究方向为原子分子与量子光学. E-mail: jpyin@phy.ecnu.edu.cn

  • 中图分类号: O435.1

Electrostatic curved mirror of cold molecules

  • 摘要: 分子(原子)平面反射镜作为重要的光学元件之一, 被广泛应用于分子(原子)囚禁、储存、导引等实验中; 但由于其仅能实现粒子纵向速度改变而在横向上没有聚焦作用, 从而导致了粒子容易发散. 以重氨(ND3)分子为例, 提出了一种结构简洁、紧凑的微型静电曲面反射镜, 通过理论计算并与Monte-Carlo模拟, 验证了其在改变分子运动方向的同时能够实现横向聚束, 进而大大增加反射分子数目. 因此, 该类反射镜可广泛用于分子操控与装载以及构成各类分子腔体等领域.
  • 图  1  (a)环形平面电极结构图, 电极宽度是200 μm, 间隔是300 μm, 中心电极半径是100 μm, 分子前进方向为 z 轴方向; (b)曲面电极结构图, 电极宽度与间隔和平面相同, 曲面的曲率半径R = 70 mm, 曲面高度340 μm

    Fig.  1  (a) Illustrative structure of circular planar electrodes, with an electrode width of 200 μm, electrode spacing of 300 μm, and electrode radius of 100 μm. The forward direction of molecules is along the z-axis; (b) Illustrative structure of curved electrodes, whose electrode width and spacing are the same as the planar ones. The radius of curvature for this mirror is 70 mm, while its height is 340 μm

    图  2  曲线表示反弹回来的ND3分子随时间变化的趋势图: 黑色曲线是分子在环形静电平面反射镜中的时间飞行(TOF)信号, 红色曲线则是分子在环形静电曲面反射镜中的TOF信号; 右上角曲线表示曲平面重力腔自由落体反射峰相对强度之比

    Fig.  2  Dependence of density of ND3 molecules on time: The black curve denotes the time-of-flight (TOF) signal of the molecules on the circular electrostatic planar mirror, while the red curve represents the TOF signal on the circular electrostatic curved mirror;the upper right corner curve shows the contrast ratio of the free-fall reflection peak intensities between the curved and planar gravitational cavities

    图  3  实线表示ND3分子在平面镜和曲面镜中的运动轨迹, 且分子的释放高度为17.5 mm: (a)分子在平面镜中的运动轨迹; (b)分子在曲面镜中的运动轨迹

    Fig.  3  Trajectories of the ND3 molecules in the planar and curved mirrors, respectively, with the release height of the molecules set at 17.5 mm: (a) Trajectory of the molecules in the planar mirror; (b) Trajectory of the molecules in the curved mirror

    图  4  ND3分子在两个凹面或两个平面反射镜构成的反射腔中时间飞行信号: 黑色曲线表示重氨分子在由两个平面反射镜构成的腔中反射的结果, 而红色曲线表示重氨分子在由两个曲面反射镜构成的腔中反射的结果; 反射腔的高度为15 mm, 分子束中心速度在纵向上为5 m/s, 横向上为0 m/s; 右上角曲线表示曲面腔与平面腔反射峰相对强度之比

    Fig.  4  TOF signal of the ND3 molecules within the reflection cavity consisted of two concave mirrors or two planar mirrors: The black line represents the result of the ND3 molecules in the cavity composed of two planar mirrors, while the red one denotes the result in the cavity composed of two concave mirrors. The reflection cavity is 15 mm in height, and the molecules have a central velocity of 5 m/s in the longitudinal direction and 0 m/s in the transverse direction.The upper right corner curve shows the contrast ratio of reflection peak intensities between the curved and planarcavities is illustrated

  • [1] WALLIS H, DALIBARD J, COHEN-TANNOUDJI C. Trapping atoms in a gravitational cavity [J]. Applied Physics B, 1992, 54(5): 407-411. DOI:  10.1007/BF00325387.
    [2] HUGHES I G, BARTON P A, ROACH T M, et al. Atom optics with magnetic surface: I. Storage of cold atoms in a curved “floppy disk” [J]. Journal of Physics B, 1997, 30: 647-657. DOI:  10.1088/0953-4075/30/3/018.
    [3] HINDS E A, HUGHES I G. Magnetic atom optics: mirrors, guides, traps, and chips for atoms [J]. Journal of Physics D, 1999, 32(18): 119-146.
    [4] WANG Y J, ANDERSON D Z, BRIGHT V M, et al. Atom Michelson interferometer on a chip using a Bose-Einstein condensate [J]. Physical Review Letters, 2005, 94: 090405. DOI:  10.1103/PhysRevLett.94.090405.
    [5] SEIFERT W, ADAMS C S, BALYKIN V I, et al. Reflection of metastable argon atoms from an evanescent wave [J]. Physical Review A, 1994, 49(5): 3814-3823. DOI:  10.1103/PhysRevA.49.3814.
    [6] SEIFERT W, KAISER R, ASPECT A, et al. Reflection of atoms from a dielectric wave guide [J]. Optics Communications, 1994, 111(5/6): 566-576. DOI:  10.1016/0030-4018(94)90536-3.
    [7] LABEYRIE G, LANDRAGIN A, VON ZANTHIER J, et al. Detailed study of a high-finesse planar waveguide for evanescent wave atomic mirrors [J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1996, 8(3): 603-627. DOI:  10.1088/1355-5111/8/3/022.
    [8] ZHENG P, GAO W J, YIN J P. Novel atomic mirror with a blue-detuned semi-Gaussian beam [J]. Chinese Physics Letters, 2003, 20(3): 379-382. DOI:  10.1088/0256-307X/20/3/318.
    [9] SABA C V, BARTON P A, BOSHIER M G, et al. Reconstruction of a cold atom cloud by magnetic focusing [J]. Physical Review Letters, 1999, 82(3): 468-471. DOI:  10.1103/PhysRevLett.82.468.
    [10] SIDOROV A I, MCLEAN R J, ROWLANDS W J, et al. Specular reflection of cold caesium atoms from a magnetostatic mirror [J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 1996, 8(3): 713-725. DOI:  10.1088/1355-5111/8/3/030.
    [11] SIDOROV A I, LAU D C, OPAT G I, et al. Magnetostatic optical elements for laser-cooled atoms [J]. Laser Physics, 1998, 8(3): 642-645.
    [12] DRNDIC M, JOHNSON K S, THYWISSEN J H, et al. Micro-electromagnets for atom manipulation [J]. Applied Physics Letters, 1998, 72(22): 2906-2908. DOI:  10.1063/1.121455.
    [13] JOHNSON K S, DRNDIC M, THYWISSEN J H, et al. Atomic deflection using an adaptive microelectromagnet mirror [J]. Physical Review Letters, 1998, 81(6): 1137-1141. DOI:  10.1103/PhysRevLett.81.1137.
    [14] LAU D C, SIDOROV A I, OPAT G I, et al. Reflection of cold atoms from an array of current-carrying wires [J]. The European Physical Journal D, 1999, 5(2): 193-199. DOI:  10.1007/s100530050244.
    [15] VLIEGEN E, MERKT F. Normal-incidence electrostatic Rydberg atom mirror [J]. Physical Review Letters, 2006, 97: 033002. DOI:  10.1103/PhysRevLett.97.033002.
    [16] SCHULZ S A, BETHLEM H L, VAN VELDHOVEN J, et al. Microstructured switchable mirror for polar molecules [J]. Physical Review Letters, 2004, 93(2): 020406. DOI: 10.1103/PhysRevLett.93.020406.
    [17] KALLUSH S, SEGEV B, CÔTÉ R, et al. Evanescent-wave mirror for ultracold diatomic polar molecules [J]. Physical Review Letters, 2005, 95(16): 163005. DOI:  10.1103/PhysRevLett.95.163005.
    [18] METSÄLÄ M, GILIJAMAE J J, HOEKSTRA S, et al. Reflection of OH molecules from magnetic mirrors [J]. New Journal of Physics, 2008, 10: 053018. DOI:  10.1088/1367-2630/10/5/053018.
    [19] FLÓREZ A I G, MEEK S A, HAAK H, et al. An electrostatic elliptical mirror for neutral polar molecules [J]. Physical Chemistry Chemical Physics, 2011, 13: 18830-18834. DOI:  10.1039/c1cp20957d.
    [20] AMINOFF C G, STEANE A M, BOUYER P, et al. Cesium atoms bouncing in a stable gravitational cavity [J]. Physical Review Letters, 1993, 71(19): 3083-3086. DOI:  10.1103/PhysRevLett.71.3083.
    [21] LISTON G J, TAN S M, WALLS D F. Quantum dynamics of bouncing atoms in a stable gravitational cavity [J]. Applied Physics B, 1995, 60(2/3): 211-227.
    [22] BALYKIN V I, LETOKHOV V S. Atomic cavity with light-induced mirrors [J]. Applied Physics B, 1989, 48(6): 517-523.
    [23] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱 [J]. 物理学报, 2018, 67(11): 113701. DOI:  10.7498/aps.67.20180206.
  • 加载中
图(4)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  108
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-09
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回