中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深度学习在认知无线电中的应用研究综述

刘波 白晓东 张更新 沈俊 谢继东 赵来定 洪涛

刘波, 白晓东, 张更新, 沈俊, 谢继东, 赵来定, 洪涛. 深度学习在认知无线电中的应用研究综述[J]. 华东师范大学学报(自然科学版), 2021, (1): 36-52. doi: 10.3969/j.issn.1000-5641.201922017
引用本文: 刘波, 白晓东, 张更新, 沈俊, 谢继东, 赵来定, 洪涛. 深度学习在认知无线电中的应用研究综述[J]. 华东师范大学学报(自然科学版), 2021, (1): 36-52. doi: 10.3969/j.issn.1000-5641.201922017
LIU Bo, BAI Xiaodong, ZHANG Gengxin, SHEN Jun, XIE Jidong, ZHAO Laiding, HONG Tao. Review of deep learning in cognitive radio[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 36-52. doi: 10.3969/j.issn.1000-5641.201922017
Citation: LIU Bo, BAI Xiaodong, ZHANG Gengxin, SHEN Jun, XIE Jidong, ZHAO Laiding, HONG Tao. Review of deep learning in cognitive radio[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 36-52. doi: 10.3969/j.issn.1000-5641.201922017

深度学习在认知无线电中的应用研究综述

doi: 10.3969/j.issn.1000-5641.201922017
基金项目: 国家自然科学基金(61701260, 91738201)
详细信息
    通讯作者:

    白晓东,男,博士,讲师,研究方向为机器学习、模式识别、计算机视觉、数字信号处理. E-mail: xdbai@njupt.edu.cn

  • 中图分类号: TN92

Review of deep learning in cognitive radio

  • 摘要: 无线通信业务的发展使得频谱资源变得越发紧张, 而现有的频谱利用效率却不高, 这一矛盾很大程度上可归结为频谱的静态分配策略. 认知无线电(Cognitive Radio, CR)技术被广泛认为是解决频谱静态分配问题的可行方案. 深度学习作为机器学习的新兴分支, 近几年在学术界和产业界都取得了许多成果, 成为人工智能的驱动性技术之一. 对深度学习在认知无线电中的应用进行了调研, 简要介绍了认知无线电和深度学习各自的发展, 且着重介绍了深度学习算法在频谱预测、频谱环境感知、信号分析等认知无线电关键技术环节中的应用, 并在最后对此进行了总结和探讨.
  • 图  1  近年论文发表趋势

    Fig.  1  Publication trends in recent years

    图  2  认知环路[7]

    Fig.  2  Cognitive loop[7]

    图  3  认知引擎

    Fig.  3  Cognitive engine

    图  4  CNN模型训练步骤

    Fig.  4  CNN model training process

    图  5  典型CNN结构

    Fig.  5  General CNN structure

    图  6  频谱图像形态学预处理[11]

    Fig.  6  Morphological preprocessing of spectral images[11]

    图  7  递归神经网络结构

    Fig.  7  Recursive neural network structure

    图  8  RNN与LSTM单元结构对比

    Fig.  8  RNN and LSTM unit structure

    图  9  基于预测的频谱接入时序结构

    Fig.  9  Timing structure based on the predicted spectrum access

    表  1  深度学习模型在CR中应用概况

    Tab.  1  Deep learning model in CR

    CR应用深度学习模型相关研究及文献
    调制识别CNN[11-26]
    DBN[27-29]
    RNNGRU (Gate Recurrent Unit)[30], LSTM[31-32]
    其他GAN(Generative Adversarial Networks)[33], AE[34-35]
    频谱预测LSTM[36-45]
    CNN[43,46]
    RNN[47-48]
    频谱感知CNN[49-55]
    DBN[56-57]
    其他DNN (Deep Neural Networks, DNN)[58], LSTM+CNN[59]
    资源分配CNN[60-62]
    下载: 导出CSV

    表  2  特征选择与适用

    Tab.  2  Features selection and their characteristics

    特征表示相关研究文献特点
    星座图[14,17,20,25]对高阶调制区分较好
    循环平稳[17,22]适应噪声环境性能优
    时频变换[11,13,15-16]覆盖波形种类多
    瞬时特征[24,31]适用码率多变及大时延场景
    特征自学习[12,18-19,21,32]预处理简单, 适用范围广
    下载: 导出CSV

    表  3  一些基于深度神经网络的频谱感知模型需要的先验知识

    Tab.  3  Prior knowledges that some DNN based spectrum sensing models needed

    相关研究PU先验信息PU统计模型
    Tang等[58]码率, 调制
    Han等[52]码率
    Do等[49] HMM
    Lee等[53]PU发射功率
    Liu等[54], Ke[59], Xie等[55]
    Liu等[51]OFDM帧
    下载: 导出CSV
  • [1] 武秀广, 宋旭, 任培明. 认知无线电关键技术及应用 [J]. 数字通信世界, 2014(2): 57-60. DOI:  10.3969/j.issn.1672-7274.2014.02.013.
    [2] TANDRA R, SAHAI A. Fundamental limits on detection in low SNR under noise uncertainty [C]//2005 International Conference on Wireless Networks, Communications and Mobile Computing. IEEE, 2005(1): 464-469. DOI: 10.1109/WIRLES.2005.1549453.
    [3] MITOLA J, MAGUIRE G Q. Cognitive radio: Making software radios more personal [J]. Software Radio Technologies: Selected Readings, 1999, 6(4): 413-418.
    [4] WU Q H, DING G R, WANG J L, et al. Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing [J]. IEEE Transactions on Wireless Communications, 2013, 12(2): 516-526. DOI:  10.1109/TWC.2012.122212.111638.
    [5] HAYKIN S. Cognitive radio: Brain-empowered wireless communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220. DOI:  10.1109/JSAC.2004.839380.
    [6] 郭永明, 李军芳, 李宁. 未来智能无线电将对频谱管理带来深刻影响 [J]. 电信科学, 2012, 28(7): 14-15.
    [7] DONG X, LI Y, WEI S Q. Design and implementation of a cognitive engine functional architecture [J]. Chinese Science Bulletin, 2012, 57(28): 3698-3704. DOI:  10.1007/s11434-012-5102-6.
    [8] CLANCY C, HECKER J, STUNTEBECK E, et al. Applications of machine learning to cognitive radio networks [J]. IEEE Wireless Communications, 2007, 14(4): 47-52. DOI:  10.1109/MWC.2007.4300983.
    [9] HINTON G, SALAKHUTDINOV R. Reducing the dimensionality of data with neural networks [J]. Science, 2006, 313(5786): 504-508. DOI:  10.1126/science.1127647.
    [10] 陈远哲, 匡俊, 刘婷婷, 等. 共指消解技术综述 [J]. 华东师范大学学报(自然科学版), 2019(5): 16-35. DOI:  10.3969/j.issn.1000-5641.2019.05.002.
    [11] ZHANG M, DIAO M, GUO L M. Convolutional neural networks for automatic cognitive radio waveform recognition [J]. IEEE Access, 2017(5): 11074-11082. DOI:  10.1109/ACCESS.2017.2716191.
    [12] YASHASHWI K, SETHI A, CHAPORKAR P. A learnable distortion correction module for modulation recognition [J]. IEEE Wireless Communications Letters, 2019, 8(1): 77-80. DOI:  10.1109/LWC.2018.2855749.
    [13] GAO L, ZHANG X, GAO J, et al. Fusion image based radar signal feature extraction and modulation recognition [J]. IEEE Access, 2019(7): 13135-13148. DOI:  10.1109/ACCESS.2019.2892526.
    [14] WANG Y, LIU M, YANG J, et al. Data-driven deep learning for automatic modulation recognition in cognitive radios [J]. IEEE Transactions on Vehicular Technology, 2019, 68(4): 4074-4077. DOI:  10.1109/TVT.2019.2900460.
    [15] ZHANG Q, XU Z, ZHANG P. Modulation recognition using wavelet-assisted convolutional neural network [C]//International Conference on Advanced Technologies for Communications. IEEE, 2018: 100-104.
    [16] HIREMATH S M, DESHMUKH S, RAKESH R. Blind identification of radio access techniques based on time-frequency analysis and convolutional neural network [C]//TENCON 2018 − 2018 IEEE Region 10 Conference. IEEE, 2018: 1163-1167.
    [17] WU H, LI Y, ZHOU L, et al. Convolutional neural network and multi-feature fusion for automatic modulation classification [J]. Electronics Letters, 2019, 55(16): 895-897. DOI:  10.1049/el.2019.1789.
    [18] GU H, WANG Y, HONG S, et al. Blind channel identification aided generalized automatic modulation recognition based on deep learning [J]. IEEE Access, 2019(7): 110722-110729. DOI:  10.1109/ACCESS.2019.2934354.
    [19] YANG X. Fusion methods for CNN-based automatic modulation classification [J]. IEEE Access, 2019(7): 66496-66504. DOI:  10.1109/ACCESS.2019.2918136.
    [20] WANG D, ZHANG M, LI J, et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning [J]. Optics Express, 2017, 25(15): 17150-17166. DOI:  10.1364/OE.25.017150.
    [21] O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]//International Conference on Engineering Applications of Neural Networks 2016: Engineering Applications of Neural Networks. Cham: Springer, 2016: 213-226..
    [22] LI R, LI L, YANG S, et al. Robust automated VHF modulation recognition based on deep convolutional neural networks [J]. IEEE Communications Letters, 2018, 22(5): 946-949. DOI:  10.1109/LCOMM.2018.2809732.
    [23] YONGSHI W, JIE G, HAO L, et al. CNN-based modulation classification in the complicated communication channel [C]//2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI). 2017: 512-516.
    [24] NADEEM F, HOON C, GUONG S, et al. Automatic modulation format / bit-rate classification and signal-to-noise ratio estimation using asynchronous delay-tap sampling [J]. Computers and Electrical Engineering, Elsevier Ltd., 2015, 47: 126-133. DOI:  10.1016/j.compeleceng.2015.09.005.
    [25] PENG S L, JIANG H Y, WANG H X, et al. Modulation classification using convolutional neural network based deep learning model [C]//2017 26th Wireless and Optical Communication Conference (WOCC). IEEE, 2017. DOI: 10.1109/WOCC.2017.7929000.
    [26] SADEGHI M, LARSSON E G. Adversarial attacks on deep-learning based radio signal classification [J]. IEEE Wireless Communications Letters, 2019, 8(1): 213-216. DOI:  10.1109/LWC.2018.2867459.
    [27] ZHANG Y, LIU T, ZHANG L B, et al. A deep learning approach for modulation recognition [C]//2018 IEEE 23rd International Conference on Digital Signal Processing (DSP). IEEE, 2018. DOI:  10.1109/ICDSP.2018.8631811.
    [28] MENDIS G J, WEI J, MADANAYAKE A. Deep learning-based automated modulation classification for cognitive radio [C]//2016 IEEE International Conference on Communication Systems (ICCS). IEEE, 2016. DOI:  10.1109/ICCS.2016.7833571.
    [29] MENDIS G J, WEI J, MADANAYAKE A. Deep belief network for automated modulation classification in cognitive radio [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI:  10.1109/CCAAW.2017.8001609.
    [30] HONG D H, ZHANG Z L, XU X D. Automatic modulation classification using recurrent neural networks [C]//2017 3rd IEEE International Conference on Computer and Communications (ICCC). IEEE, 2017: 695-700. DOI:  10.1109/CompComm.2017.8322633.
    [31] RAJENDRAN S, MEMBER S, MEERT W, et al. Deep learning models for wireless signal classification with distributed low-cost spectrum sensors [J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(3): 433-445. DOI:  10.1109/TCCN.2018.2835460.
    [32] WEST N E, O’HEA T. Deep architectures for modulation recognition [C]//2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2017. DOI:  10.1109/DySPAN.2017.7920754.
    [33] TANG B, TU Y, ZHANG Z, et al. Digital signal modulation classification with data augmentation using generative adversarial nets in cognitive radio networks [J]. IEEE Access, 2018(6): 15713-15722. DOI:  10.1109/ACCESS.2018.2815741.
    [34] LI J, QI L, LIN Y, et al. Research on modulation identification of digital signals based on deep learning [C]//2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2016: 402-405.
    [35] DAI A, ZHANG H, SUN H. Automatic modulation classification using stacked sparse auto-encoders [C]//2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016: 248-252.
    [36] YU L, CHEN J, DING G R, et al. Spectrum prediction based on taguchi method in deep learning with long short-term memory [J]. IEEE Access, 2018(6): 45923-45933. DOI:  10.1109/ACCESS.2018.2864222.
    [37] HERNÁNDEZ J, LÓPEZ D, VERA N. Primary user characterization for cognitive radio wireless networks using long short-term memory [J]. International Journal of Distributed Sensor Networks, 2018, 14(11). DOI: 10.1177/1550147718811828.
    [38] ZUO P L, WANG X, LINGHU W D, et al. Prediction-based spectrum access optimization in cognitive radio networks [C]//2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018. DOI:  10.1109/PIMRC.2018.8580726.
    [39] YU L, CHEN J, DING G R. Spectrum prediction via long short term memory [C]//2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017. IEEE, 2018: 643-647.
    [40] AGARWAL A, DUBEY S, KHAN M A, et al. Learning based primary user activity prediction in cognitive radio networks for efficient dynamic spectrum access [C]//2016 International Conference on Signal Processing and Communications, SPCOM 2016. IEEE, 2016. DOI:  10.1109/SPCOM.2016.7746632.
    [41] SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Deep-learning based cooperative spectrum prediction for cognitive networks [C]//2018 International Conference on Information and Communication Technology Convergence (ICTC). IEEE, 2018: 133-137. DOI: 10.1109/ICTC.2018.8539570.
    [42] SHAWEL B S, WOLDEGEBREAL D H, POLLIN S. Convolutional LSTM-based long-term spectrum prediction for dynamic spectrum access [C]// 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. DOI: 10.23919/EUSIPCO.2019.8902956.
    [43] OMOTERE O, FULLER J, QIAN L J, et al. Spectrum occupancy prediction in coexisting wireless systems using deep learning [C]//2018 IEEE 88th Vehicular Technology Conference (VTC-Fall). IEEE, 2018. DOI: 10.1109/VTCFall.2018.8690575.
    [44] ROY D, MUKHERJEE T, CHATTERJEE M, et al. Primary user activity prediction in DSA networks using recurrent structures [C]//2019 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2019. DOI: 10.1109/DySPAN.2019.8935716.
    [45] YU L X, WANG Q L, GUO Y F, et al. Spectrum availability prediction in cognitive aerospace communications: A deep learning perspective [C]//2017 Cognitive Communications for Aerospace Applications Workshop (CCAA). IEEE, 2017. DOI: 10.1109/CCAAW.2017.8001877.
    [46] YU L, CHEN J, ZHANG Y, et al. Deep spectrum prediction in high frequency communication based on temporal-spectral residual network [J]. China Communications, 2018, 15(9): 25-34. DOI:  10.1109/CC.2018.8456449.
    [47] AGARWAL A, GANGOPADHYAY R. Predictive spectrum occupancy probability-based spatio-temporal dynamic channel allocation map for future cognitive wireless networks [J]. Transactions on Emerging Telecommunications Technologies, 2018, 29(8): e3442. DOI:  10.1002/ett.3442.
    [48] TANG Z L, LI S M. Deep recurrent neural network for multiple time slot frequency spectrum predictions of cognitive radio [J]. KSII Transactions on Internet and Information Systems, 2017, 11(6): 3029-3045. DOI:  10.3837/tiis.2017.06.013.
    [49] DO V Q, KOO I. Learning frameworks for cooperative spectrum sensing and energy-efficient data protection in cognitive radio networks [J]. Applied Sciences, 2018, 8(5): 722-745. DOI:  10.3390/app8050722.
    [50] MERCHANT K, REVAY S, STANTCHEV G, et al. Deep learning for RF device fingerprinting in cognitive communication networks [J]. IEEE Journal on Selected Topics in Signal Processing, 2018, 12(1): 160-167. DOI:  10.1109/JSTSP.2018.2796446.
    [51] LIU H, ZHU X, FUJII T. Adversarial training for low-complexity convolutional neural networks using in spectrum sensing [C]//2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). IEEE, 2019: 478-483. DOI:  10.1109/ICAIIC.2019.8668844.
    [52] HAN D, SOBABE G C, ZHANG C J, et al. Spectrum sensing for cognitive radio based on convolution neural network [C]//2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). IEEE, 2017. DOI: 10.1109/CISP-BMEI.2017.8302117.
    [53] LEE W, KIM M, CHO D H. Deep cooperative sensing: Cooperative spectrum sensing based on convolutional neural networks [J]. IEEE Transactions on Vehicular Technology, 2019, 68(3): 3005-3009. DOI:  10.1109/TVT.2019.2891291.
    [54] LIU C, WANG J, LIU X M, et al. Deep CM-CNN for spectrum sensing in cognitive radio [J]. IEEE Journal on Selected Areas in Communications, 2019, 37(10): 2306-2321. DOI:  10.1109/JSAC.2019.2933892.
    [55] XIE J D, LIU C, LIANG Y C, et al. Activity pattern aware spectrum sensing: A CNN-based deep learning approach [J]. IEEE Communications Letters, 2019, 23(6): 1025-1028. DOI:  10.1109/LCOMM.2019.2910176.
    [56] CUI Y H, JING X J, SUN S L, et al. Deep learning based primary user classification in cognitive radios [C]//2015 15th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2015: 165-168. DOI:  10.1109/ISCIT.2015.7458333.
    [57] SUN X K, GAO L, LUO X D, et al. RBM based cooperative Bayesian compressive spectrum sensing with adaptive threshold [C]//2016 IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2016. DOI: 10.1109/ICCChina.2016.7636844
    [58] TANG Y J, ZHANG Q Y, LIN W. Artificial neural network based spectrum sensing method for cognitive radio [C]//2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM). IEEE, 2010. DOI: 10.1109/WICOM.2010.5601105.
    [59] KE D, HUANG Z T, WANG X, et al. Blind detection techniques for non-cooperative communication signals based on deep learning [J]. IEEE Access, 2019(7): 89218-89225. DOI:  10.1109/ACCESS.2019.2926296.
    [60] LEE W. Resource allocation for multi-channel underlay cognitive radio network based on deep neural network [J]. IEEE Communications Letters, IEEE, 2018, 22(9): 1942-1945. DOI:  10.1109/LCOMM.2018.2859392.
    [61] DU Y H, ZHANG F, XUE L. A kind of joint routing and resource allocation scheme based on prioritized memories-deep Q network for cognitive radio ad hoc networks [J]. Sensors, 2018, 18(7): 2119-2139. DOI:  10.3390/s18072119.
    [62] WANG S, LIU H, GOMES P H, et al. Deep reinforcement learning for dynamic multichannel access in wireless networks [J]. IEEE Transactions on Cognitive Communications and Networking, 2018, 4(2): 257-265. DOI:  10.1109/TCCN.2018.2809722.
    [63] LAWRENCE S, GILES C L, AH CHUNG TSOI, et al. Face recognition: A convolutional neural-network approach [J]. IEEE Transactions on Neural Networks, 1997, 8(1): 98-113. DOI:  10.1109/72.554195.
    [64] LECUN Y, FU JIE HUANG, BOTTOU L. Learning methods for generic object recognition with invariance to pose and lighting [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004, CVPR 2004. IEEE, 2004(2): 97-104.
    [65] ABDEL-HAMID O, MOHAMED A, JIANG H, et al. Applying convolutional neural networks concepts to hybrid NN-HMM model for speech recognition [C]//2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012: 4277-4280. DOI:  10.1109/ICASSP.2012.6288864.
    [66] ABDEL-HAMID O, MOHAMED A, JIANG H, et al. Convolutional neural networks for speech recognition [J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(10): 1533-1545. DOI:  10.1109/TASLP.2014.2339736.
    [67] NIU X X, SUEN C Y. A novel hybrid CNN-SVM classifier for recognizing handwritten digits [J]. Pattern Recognition, 2012, 45(4): 1318-1325. DOI:  10.1016/j.patcog.2011.09.021.
    [68] LAUER F, SUEN C Y, BLOCH G. A trainable feature extractor for handwritten digit recognition [J]. Pattern Recognition, 2007, 40(6): 1816-1824. DOI:  10.1016/j.patcog.2006.10.011.
    [69] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. DOI:  10.1109/5.726791.
    [70] HAUSER S C, HEADLEY W C, MICHAELS A J. Signal detection effects on deep neural networks utilizing raw IQ for modulation classification [C]// MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). IEEE, 2017: 121-127. DOI:  10.1109/MILCOM.2017.8170853.
    [71] O’SHEA T J, HOYDIS J. An introduction to deep learning for the physical layer [J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(4): 563-575. DOI:  10.1109/TCCN.2017.2758370.
    [72] SAHAI A, TANDRA R, MISHRA S M, et al. Fundamental design tradeoffs in cognitive radio systems[C]// Proceedings of the 1rst International Workshop on Technology and Policy for Accessing Spectrum. ACM, 2006. DOI: 10.1145/1234388.1234390.
    [73] 郭彩丽, 张天魁, 曾志民, 等. 认知无线电关键技术及应用的研究现状 [J]. 电信科学, 2006(8): 50-55. DOI:  10.3969/j.issn.1000-0801.2006.08.013.
    [74] 曾英, 李志勇, 张春平, 等. 新型协作频谱感知系统检测性能优化策略[J]. 华东师范大学学报(自然科学版), 2016(3): 84-91.
    [75] JIN S, ZHANG X. Compressive spectrum sensing for MIMO-OFDM based cognitive radio networks [C]//2015 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2015: 2197-2202.
    [76] JAFAR A, SRINIVASA S. The throughput potential of cognitive radio [J]. IEEE Communications Magazine, 2007, 45(5): 73-79. DOI:  10.1109/MCOM.2007.358852.
    [77] SON K, JUNG B C, CHONG S, et al. Power allocation for OFDM-based cognitive radio systems under outage constraints [C]//2010 IEEE International Conference on Communications. IEEE, 2010. DOI: 10.1109/ICC.2010.5501790.
    [78] YE H, LI G Y, JUANG B H. Power of deep learning for channel estimation and signal detection in OFDM systems [J]. IEEE Wireless Communications Letters, 2018, 7(1): 114-117. DOI:  10.1109/LWC.2017.2757490.
    [79] GALINDO-SERRANO A, GIUPPONI L. Distributed Q-learning for aggregated interference control in cognitive radio networks [J]. IEEE Transactions on Vehicular Technology, 2010, 59(4): 1823-1834. DOI:  10.1109/TVT.2010.2043124.
    [80] VENKATRAMAN P, HAMDAOUI B, GUIZANI M. Opportunistic bandwidth sharing through reinforcement learning [J]. IEEE Transactions on Vehicular Technology, 2010, 59(6): 3148-3153. DOI:  10.1109/TVT.2010.2048766.
    [81] LUND J. Reinforcement learning based distributed multiagent sensing policy for cognitive radio networks [C]//2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN). IEEE, 2011: 642-646.
    [82] WANG Z Y, SCHAUL T, HESSEL M, et al. Dueling network architectures for deep reinforcement learning [C]//Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48. JMLR, 2016: 1995-2003.
    [83] 刘全, 翟建伟, 章宗长, 等. 深度强化学习综述[J]. 计算机学报, 2018, 41(1): 1-27.
    [84] VOEGTLIN T, DOMINEY P F. Linear recursive distributed representations [J]. Neural Networks, 2005, 18(7): 878-895. DOI:  10.1016/j.neunet.2005.01.005.
    [85] LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436-444. DOI:  10.1038/nature14539.
    [86] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997, 9(8): 1735-1780. DOI:  10.1162/neco.1997.9.8.1735.
    [87] MACKAY D J C. A practical Bayesian framework for backpropagation networks [J]. Neural Computation, 1992, 4(3): 448-472. DOI:  10.1162/neco.1992.4.3.448.
    [88] UTSUGI A. Hyperparameter selection for self-organizing maps [J]. Neural Computation, 1997, 9(3): 623-635. DOI:  10.1162/neco.1997.9.3.623.
    [89] GRAHAM B M, ADLER A. Objective selection of hyperparameter for EIT [J]. Physiological Measurement, 2006, 27(5): S65-S79. DOI:  10.1088/0967-3334/27/5/S06.
    [90] CHEN Z, GUO N, HU Z, et al. Experimental validation of channel state prediction considering delays in practical cognitive radio [J]. IEEE Transactions on Vehicular Technology, 2011, 60(4): 1314-1325. DOI:  10.1109/TVT.2011.2116051.
    [91] LIN Z J, JIANG X Y, HUANG L F, et al. A energy prediction based spectrum sensing approach for cognitive radio networks [C]//2009 5th International Conference on Wireless Communications, Networking and Mobile Computing. IEEE, 2009. DOI:  10.1109/WICOM.2009.5302514.
    [92] CHEN Z. Channel state prediction in cognitive radio [C]// Cognitive Radio and Interference Management Technology and Strategy, 2012(15): 273-288. DOI:  10.4018/978-1-4666-2005-6.ch015.
    [93] WANG L C, WANG C W, CHANG C J. Modeling and analysis for spectrum handoffs in cognitive radio networks [J]. IEEE Transactions on Mobile Computing, 2012, 11(9): 1499-1513. DOI:  10.1109/TMC.2011.155.
    [94] DING G R, WANG J L, WU Q H, et al. On the limits of predictability in real-world radio spectrum state dynamics: From entropy theory to 5G spectrum sharing [J]. IEEE Communications Magazine, 2015, 53(7): 178-183. DOI:  10.1109/MCOM.2015.7158283.
    [95] XING X, JING T, CHENG W, et al. Spectrum prediction in cognitive radio networks [J]. IEEE Wireless Communications, 2013, 20(2): 90-96. DOI:  10.1109/MWC.2013.6507399.
    [96] ELTOM H, KANDEEPAN S, EVANS R J, et al. Statistical spectrum occupancy prediction for dynamic spectrum access: A classification [J]. EURASIP Journal on Wireless Communications and Networking, 2018(1): Article number 29. DOI:  10.1186/s13638-017-1019-8.
    [97] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [J]. Neural Computation, 2006, 18(7): 1527-1554. DOI:  10.1162/neco.2006.18.7.1527.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  730
  • HTML全文浏览量:  927
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-16
  • 网络出版日期:  2020-06-06
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回