中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

I掺杂TiO2纳米管阵列平面光催化燃料电池的性能研究

周君 席清华 黄宜强 聂耳 孙卓

周君, 席清华, 黄宜强, 聂耳, 孙卓. I掺杂TiO2纳米管阵列平面光催化燃料电池的性能研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 165-175. doi: 10.3969/j.issn.1000-5641.201922019
引用本文: 周君, 席清华, 黄宜强, 聂耳, 孙卓. I掺杂TiO2纳米管阵列平面光催化燃料电池的性能研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 165-175. doi: 10.3969/j.issn.1000-5641.201922019
ZHOU Jun, XI Qinghua, HUANG Yiqiang, NIE Er, SUN Zhuo. Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 165-175. doi: 10.3969/j.issn.1000-5641.201922019
Citation: ZHOU Jun, XI Qinghua, HUANG Yiqiang, NIE Er, SUN Zhuo. Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 165-175. doi: 10.3969/j.issn.1000-5641.201922019

I掺杂TiO2纳米管阵列平面光催化燃料电池的性能研究

doi: 10.3969/j.issn.1000-5641.201922019
基金项目: 上海市科委社发处项目(19DZ1205102)
详细信息
    通讯作者:

    聂 耳, 男, 工程师, 研究方向为材料科学. E-mail:enie@phy.ecnu.edu.cn

  • 中图分类号: TM911.4

Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells

  • 摘要: 采用阳极氧化法制备了I掺杂TiO2纳米管阵列(I-doped TiO2 Nanotubes Arrays, ITNA)光阳极, 该电极表现出比TNA更加优异的降解性能. 将ITNA与Pt电极组合得到的平面光催化燃料电池(planar Photocatalytic Fuel Cell, p-PFC)在亚甲基蓝(Methylene Blue, MB)浓度为6 mg·L–1、极板间距为1.0 cm时脱色率达到最大, 为93.1%. MB的降解发生在ITNA表面, 为限速步骤. 对比了p-PFC和传统PFC结构对MB和其他有机物的降解, p-PFC中h+和·OH的产生和传质优于其他结构, 具有更高的光催化性能.
  • 图  1  不同电池结构示意图

    Fig.  1  Schematic diagram of different cell structures

    图  2  TNA、ITNA 的SEM图和EDS元素分布图

    Fig.  2  SEM images and EDS mapping of TNA and ITNA

    图  3  Ti片、TNA 和ITNA 的XRD图谱

    Fig.  3  XRD patterns of Ti, TNA, and ITNA

    图  4  ITNA的XPS图谱

    Fig.  4  XPS spectra of ITNA

    图  5  在PO、TNA、f-PFC-1、f-PFC-2和p-PFC条件下对MB进行降解

    Fig.  5  Degradation of MB under PO, TNA, f-PFC-1, f-PFC-2, and p-PFC

    图  6  p-PFC中不同极板间距对MB脱色率的影响

    Fig.  6  Degradation of MB with different plate spacing in p-PFC

    图  7  p-PFC不同MB浓度对脱色率的影响

    Fig.  7  Percentage of color removal with different MB concentration in p-PFC

    图  8  MB的脱色速率常数

    Fig.  8  Decolorization rate constants for MB

    图  9  添加h+、·OH捕获剂条件下MB的降解

    Fig.  9  The degradation of MB with the addition of h+ and ·OH scavengers

    图  10  不同电池结构中3种有机物的降解

    Fig.  10  Degradation and the decolorization rate constants of three organics in different cell structures

    表  1  不同PFC结构中h+、·OH(h+)、·OH(HR)、SSO和OOS占MB脱色的百分比

    Tab.  1  The percentages of h+, ·OH(h+), ·OH(HR), SSO and OOS in MB decolorization with different PFC structures %

    PFC结构h+·OH(h+)·OH(HR)SSOOOS
    p-PFC24.220.436.53.815.2
    f-PFC-118.112.430.57.631.4
    f-PFC-238.522.023.18.827.5
    下载: 导出CSV
  • [1] ZHAO H J, JIANG D L, ZHANG S Q, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand [J]. Analytical Chemistry, 2004, 76(1): 155-160. DOI:  10.1021/ac0302298.
    [2] ZANONI M V B, SENE J J, ANDERSON M A. Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 55-63. DOI:  10.1016/S1010-6030(02)00320-9.
    [3] REHMAN S, ULLAH R, BUTT A M, et al. Strategies of making TiO2 and ZnO visible light active [J]. Journal of Hazardous Materials, 2009, 170(2/3): 560-569. DOI:  10.1016/j.jhazmat.2009.05.064.
    [4] LI X Z, LI F B, FAN C M, et al. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode [J]. Water Research, 2002, 36(9): 2215-2224. DOI:  10.1016/S0043-1354(01)00440-7.
    [5] WANG Y W, HUANG Y, HO W K, et al. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 77-87. DOI:  10.1016/j.jhazmat.2009.03.071.
    [6] XIE D M, FENG S J, LIN Y, et al. Preparation of porous nanocrystalline TiO2 electrode by screen-printing technique [J]. Chinese Science Bulletin, 2007, 52(18): 2481-2485. DOI:  10.1007/s11434-007-0372-0.
    [7] LIANOS P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field [J]. Journal of Hazardous Materials, 2011, 185(2/3): 575-590.
    [8] WU Z Y, ZHAO G H, ZHANG Y J, et al. A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production [J]. Journal of Materials Chemistry A, 2015, 3(7): 3416-3424. DOI:  10.1039/C4TA06604A.
    [9] LIU Y B, LI J H, ZHOU B X, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell [J]. Water Research, 2011, 45(13): 3991-3998. DOI:  10.1016/j.watres.2011.05.004.
    [10] SZKODA M, SIUZDAK K, LISOWSKA-OLEKSIAK A. Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes [J]. Journal of Solid State Electrochemistry, 2016, 20(2): 563-569. DOI:  10.1007/s10008-015-3081-7.
    [11] TIAN S Y, GUO J H, ZHAO C, et al. Preparation of cellulose/graphene oxide composite membranes and their application in removing organic contaminants in wastewater [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(4): 2147-2153. DOI:  10.1166/jnn.2019.15808.
    [12] LIU Y B, LI J H, ZHOU B X, et al. A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation [J]. Chemical Communications, 2011, 47(37): 10314-10316. DOI:  10.1039/c1cc13388h.
    [13] DENG P C, HU J Z, WANG H Z, et al. Hydrothermal preparation and comparative study of halogen-doping TiO2 photocatalysts [J]. Journal of Advanced Oxidation Technologies, 2010, 13(2): 200-205.
    [14] SU W Y, ZHANG Y F, LI Z H, et al. Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis [J]. Langmuir, 2008, 24(7): 3422-3428. DOI:  10.1021/la701645y.
    [15] TOJO S, TACHIKAWA T, FUJITSUKA M, et al. Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism [J]. The Journal of Physical Chemistry C, 2008, 112(38): 14948-14954. DOI:  10.1021/jp804985f.
    [16] WANG W A, SHI Q, WANG Y P, et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method [J]. Applied Surface Science, 2011, 257(8): 3688-3696. DOI:  10.1016/j.apsusc.2010.11.108.
    [17] DEVI L G, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity [J]. Applied Catalysis B: Environmental, 2013, 140: 559-587.
    [18] MA Y, FU J W, XIA T, et al. Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity [J]. Applied Surface Science, 2011, 257(11): 5046-5051. DOI:  10.1016/j.apsusc.2011.01.019.
    [19] LIU D, WANG J Q, ZHOU J, et al. Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study [J]. Chemical Engineering Journal, 2019, 369: 968-978. DOI:  10.1016/j.cej.2019.03.140.
    [20] DAGHRIR R, DROGUI P, ROBERT D. Photoelectrocatalytic technologies for environmental applications [J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2012, 238: 41-52.
    [21] LEE W J, RAMASAMY E, LEE D Y, et al. Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183(1/2): 133-137. DOI:  10.1016/j.jphotochem.2006.03.006.
    [22] JANZEN E G, KOTAKE Y, HINTON R D. Stabilities of hydroxyl radical spin adducts of PBN-type spin traps [J]. Free Radical Biology and Medicine, 1992, 12(2): 169-173. DOI:  10.1016/0891-5849(92)90011-5.
    [23] GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414(6861): 338-344. DOI:  10.1038/35104607.
    [24] GARCIA-SEGURA S, BRILLAS E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35. DOI:  10.1016/j.jphotochemrev.2017.01.005.
    [25] ANTONIADOU M, LIANOS P. Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell [J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 307-313.
    [26] SU Y L, XIAO Y T, FU X, et al. Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes [J]. Materials Research Bulletin, 2009, 44(12): 2169-2173. DOI:  10.1016/j.materresbull.2009.08.017.
    [27] ZHOU L, DENG J, ZHAO Y B, et al. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation [J]. Materials Chemistry and Physics, 2009, 117(2/3): 522-527.
    [28] HO-KIMURA S, MONIZ S J A, HANDOKO A D, et al. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes [J]. Journal of Materials Chemistry A, 2014, 2(11): 3948-3953. DOI:  10.1039/c3ta15268e.
    [29] ANTONIADOU M, LIANOS P. Photoelectrochemical oxidation of organic substances over nanocrystalline titania: Optimization of the photoelectrochemical cell [J]. Catalysis Today, 2009, 144(1/2): 166-171.
    [30] MENG X C, ZHANG Z S, LI X G. Synergetic photoelectrocatalytic reactors for environmental remediation: A review [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 83-101. DOI:  10.1016/j.jphotochemrev.2015.07.003.
    [31] MATSUOKA M, KITANO M, FUKUMOTO S, et al. The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films [J]. Catalysis Today, 2008, 132(1/2/3/4): 159-164.
    [32] ANTONIADOU M, LIANOS P. Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell [J]. Applied Catalysis B, Environmental, 2010, 99(1/2): 307-313.
    [33] ANTONIADOU M, KONDARIDES D I, LABOU D, et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes [J]. Solar Energy Materials and Solar Cells, 2009, 94(3): 592-597.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  57
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-18
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回