中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

交联聚乙烯醇膜制备优化及在电吸附中的应用

陈玲 毛疏笛 张奕 李哲 朴贤卿 孙卓 赵然

陈玲, 毛疏笛, 张奕, 李哲, 朴贤卿, 孙卓, 赵然. 交联聚乙烯醇膜制备优化及在电吸附中的应用[J]. 华东师范大学学报(自然科学版), 2020, (2): 120-130. doi: 10.3969/j.issn.1000-5641.201931003
引用本文: 陈玲, 毛疏笛, 张奕, 李哲, 朴贤卿, 孙卓, 赵然. 交联聚乙烯醇膜制备优化及在电吸附中的应用[J]. 华东师范大学学报(自然科学版), 2020, (2): 120-130. doi: 10.3969/j.issn.1000-5641.201931003
CHEN Ling, MAO Shudi, ZHANG Yi, LI Zhe, PIAO Xianqing, SUN Zhuo, ZHAO Ran. Preparation and application of crosslinked polyvinyl alcohol in electrosorption[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 120-130. doi: 10.3969/j.issn.1000-5641.201931003
Citation: CHEN Ling, MAO Shudi, ZHANG Yi, LI Zhe, PIAO Xianqing, SUN Zhuo, ZHAO Ran. Preparation and application of crosslinked polyvinyl alcohol in electrosorption[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 120-130. doi: 10.3969/j.issn.1000-5641.201931003

交联聚乙烯醇膜制备优化及在电吸附中的应用

doi: 10.3969/j.issn.1000-5641.201931003
基金项目: 上海市青年科技英才扬帆计划(16YF1403000);国家自然科学基金青年项目(21606085)
详细信息
    通讯作者:

    赵 然, 男, 副教授, 研究方向为电化学吸附. E-mail: rzhao@phy.ecnu.edu.cn

  • 中图分类号: P747+.99

Preparation and application of crosslinked polyvinyl alcohol in electrosorption

  • 摘要: 采用化学交联法制备聚乙烯醇(PVA)复合膜, 研究磺基琥珀酸(SSA)交联聚乙烯醇薄膜的电容去离子行为. 磺基琥珀酸作为一种交联剂和亲水基团的给体, 可以很好地应用于聚乙烯醇膜的改性. 详细研究了制备工艺(交联剂含量, 交联温度)对复合膜电容去离子性能的影响, 并进行对比实验, 将电容去离子系统(CDI)(仅使用活性炭电极)和采用了PVA与SSA交联的膜电容去离子系统(MCDI)(电极表面覆盖离子交换膜)分别进行吸脱附运行操作. 结果表明: 当交联剂SSA的质量分数为5%, 交联温度为100 ℃时, 交联聚乙烯醇复合膜在电容去离子中的应用使电极的吸附量增强了15%左右, 电荷效率平均提高了25%.
  • 图  1  聚乙烯醇和磺基琥珀酸的反应机理

    Fig.  1  Possible reaction mechanism of PVA and SSA

    图  2  MCDI系统和MCDI单元

    Fig.  2  Schematic diagram of the experimental setup and MCDI unit cell configuration

    图  3  MCDI单元实物图

    Fig.  3  Images of the MCDI unit cell

    图  4  不同交联温度下的膜电位与理论拟合结果

    Fig.  4  Membrane potential and theoretical fitting results at different cross-linking temperatures

    图  5  不同交联温度下的聚乙烯醇膜的迁移数

    Fig.  5  Migration number of MPV membrane at different cross-linking temperatures

    图  6  聚乙烯醇和磺基琥珀酸的交联机理

    注: (a)交联温度的影响; (b)聚合物基质中磺基琥珀酸含量的影响

    Fig.  6  Postulated crosslinking mechanism of PVA/SSA

    图  7  不同含量磺基琥珀酸的膜电位和理论拟合结果

    Fig.  7  Membrane potential and theoretical fitting results at different SSA content levels

    图  8  不同含量磺基琥珀酸交联膜的迁移数

    Fig.  8  Number of migrations at different SSA content levels

    图  9  交联聚乙烯醇阳离子交换膜的电容去离子吸附脱附曲线(NaCl溶液)

    Fig.  9  Capacitive deionization of NaCl solutions with a crosslinked polyvinyl alcohol cation exchange membrane

    图  10  CDI和MCDI的电导率曲线图

    Fig.  10  Conductivity curve of CDI and MCDI

    图  11  CDI和MCDI的除盐能力对比

    Fig.  11  Comparison of desalination ability for CDI and MCDI

    图  12  CDI和MCDI的电荷效率对比

    Fig.  12  Comparison of charge efficiency for CDI and MCDI

    表  1  交联聚乙烯醇膜的成本

    Tab.  1  Cost of cross-liked PVA membrane

    材料价格/元总量/g总用量/g 总价/(元·m–2)
    PVA27500 10104.699
    SSA679.4250 7.692 3
    注: 每片电极所用膜重约0.025 g, 面积约为3 600 mm2
    下载: 导出CSV
  • [1] 王熹, 王湛, 杨文涛, 等. 中国水资源现状及其未来发展方向展望 [J]. 环境工程, 2014, 32(7): 1-5.
    [2] OKI T, KANAE S. Global hydrological cycles and world water resources [J]. Science, 2006, 313(5790): 1068-1072. DOI:  10.1126/science.1128845.
    [3] KUMMU M, GUILLAUME J H, DE MOEL H, et al. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability [J]. Scientific Reports, 2016, 6(1): 38495. DOI:  10.1038/srep38495.
    [4] PORADA S, ZHAO R, VAN DER WAL A, et al. Review on the science and technology of water desalination by capacitive deionization [J]. Progress in Materials Science, 2013, 58(8): 1388-1442. DOI:  10.1016/j.pmatsci.2013.03.005.
    [5] BROGIOLI D. Extracting renewable energy from a salinity difference using a capacitor [J]. Physical Review Letters, 2009, 103(5): 058501. DOI:  10.1103/PhysRevLett.103.058501.
    [6] BAZANT M Z, THORNTON K, AJDARI A. Diffuse-charge dynamics in electrochemical systems [J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(2): 21506. DOI:  10.1103/PhysRevE.70.021506.
    [7] 尹广军, 陈福明. 电容去离子研究进展 [J]. 水处理技术, 2003(2): 63-66. DOI:  10.3969/j.issn.1000-3770.2003.02.001.
    [8] BIKERMAN J J. Structure and capacity of electrical double layer [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2009, 33(220): 384-397.
    [9] BIESHEUVEL P M. Thermodynamic cycle analysis for capacitive deionization [J]. Journal of Colloid and Interface Science, 2009, 332(1): 258-264. DOI:  10.1016/j.jcis.2008.12.018.
    [10] BIESHEUVEL P M, VAN LIMPT B, VAN DER WAL A. Dynamic adsorption/desorption process model for capacitive deionization [J]. The Journal of Physical Chemistry C, 2009, 113(14): 5636-5640. DOI:  10.1021/jp809644s.
    [11] WANG G, QIAN B, DONG Q, et al. Highly mesoporous activated carbon electrode for capacitive deionization [J]. Separation and Purification Technology, 2013, 103(103): 216-221.
    [12] PORADA S, BORCHARDT L, OSCHATZ M, et al. Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization [J]. Energy & Environmental Science, 2013, 6(12): 3700.
    [13] NADAKATTI S, TENDULKAR M, KADAM M. Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology [J]. Desalination, 2011, 268(1/2/3): 182-188.
    [14] ZOU L, MORRIS G, QI D. Using activated carbon electrode in electrosorptive deionisation of brackish water [J]. Desalination, 2008, 225(1/2/3): 329-340.
    [15] YANG C M, CHOI W H, NA B K, et al. Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes [J]. Desalination, 2005, 174(2): 125-133. DOI:  10.1016/j.desal.2004.09.006.
    [16] LI L, ZOU L, SONG H, et al. Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride [J]. Carbon, 2009, 47(3): 775-781. DOI:  10.1016/j.carbon.2008.11.012.
    [17] FARMER J C, FIX D V, MACK G V. Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes [J]. Journal of The Electrochemical Society, 1996, 143(1): 159-169. DOI:  10.1149/1.1836402.
    [18] KIM D, GUIVER M, NAM S, et al. Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(styrene sulfonic acid-co-maleic acid) [J]. Journal of Membrane Science, 2006, 281(1/2): 156-162.
    [19] KIM Y J, CHOI J H. Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane [J]. Separation and Purification Technology, 2010, 71(1): 70-75. DOI:  10.1016/j.seppur.2009.10.026.
    [20] KIM Y J, CHOI J H. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer [J]. Water Research, 2010, 44(3): 990-996. DOI:  10.1016/j.watres.2009.10.017.
    [21] LEE J B, PARK K K, EUM H M, et al. Desalination of a thermal power plant wastewater by membrane capacitive deionization [J]. Desalination, 2006, 196(1/2/3): 125-134.
    [22] KIM T, DYKSTRA J E, PORADA S, et al. Enhanced charge efficiency and reduced energy use in capacitive deionization by increasing the discharge voltage [J]. Journal of Colloid and Interface Science, 2015, 446: 317-326. DOI:  10.1016/j.jcis.2014.08.041.
    [23] ZHAO R, SATPRADIT O, RIJNAARTS H H, et al. Optimization of salt adsorption rate in membrane capacitive deionization [J]. Water Research, 2013, 47(5): 1941-1952. DOI:  10.1016/j.watres.2013.01.025.
    [24] RHIM J, PARK H, LEE C, et al. Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: Proton and methanol transport through membranes [J]. Journal of Membrane Science, 2004, 238(1/2): 143-151.
    [25] LEBRUN L, DA SILVA E, METAYER M. Elaboration of ion-exchange membranes with semi-interpenetrating polymer networks containing poly(vinyl alcohol) as polymer matrix [J]. Journal of Applied Polymer Science, 2002, 84(8): 1572-1580. DOI:  10.1002/app.10420.
    [26] KIM J H, KIM J Y, LEE Y M, et al. Properties and swelling characteristics of cross-linked poly(vinyl alcohol)/chitosan blend membrane [J]. Journal of Applied Polymer Science, 1992, 45(10): 1711-1717. DOI:  10.1002/app.1992.070451004.
    [27] KRUMOVA M, L PEZ D, BENAVENTE R, et al. Effect of crosslinking on the mechanical and thermal properties of poly(vinyl alcohol) [J]. Polymer, 2000, 41(26): 9265-9272. DOI:  10.1016/S0032-3861(00)00287-1.
    [28] 闫卫东, 姚加, 谢学鹏, 等. 用电动势法测定NaBr在甲醇-水体系中298.15 K下的离子迁移数 [J]. 化学物理学报, 1996(6): 552-558.
    [29] NAGARALE R K, SHAHI V K, THAMPY S K, et al. Studies on electrochemical characterization of polycarbonate and polysulfone based heterogeneous cation-exchange membranes [J]. Reactive & Functional Polymers, 2004, 61(1): 131-138.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  243
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-28
  • 网络出版日期:  2019-12-27
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回