中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浙江天童国家森林公园常绿阔叶林种间关联和种-生境关联

杨庆松 刘何铭 朱彤彤 张首和 王希华

杨庆松, 刘何铭, 朱彤彤, 张首和, 王希华. 浙江天童国家森林公园常绿阔叶林种间关联和种-生境关联[J]. 华东师范大学学报(自然科学版), 2020, (2): 110-119. doi: 10.3969/j.issn.1000-5641.201931004
引用本文: 杨庆松, 刘何铭, 朱彤彤, 张首和, 王希华. 浙江天童国家森林公园常绿阔叶林种间关联和种-生境关联[J]. 华东师范大学学报(自然科学版), 2020, (2): 110-119. doi: 10.3969/j.issn.1000-5641.201931004
YANG Qingsong, LIU Heming, ZHU Tongtong, ZHANG Shouhe, WANG Xihua. Interspecies associations and species-habitat associations in the evergreen broad-leaved forest of Tiantong National Forest Park, Zhejiang[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 110-119. doi: 10.3969/j.issn.1000-5641.201931004
Citation: YANG Qingsong, LIU Heming, ZHU Tongtong, ZHANG Shouhe, WANG Xihua. Interspecies associations and species-habitat associations in the evergreen broad-leaved forest of Tiantong National Forest Park, Zhejiang[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 110-119. doi: 10.3969/j.issn.1000-5641.201931004

浙江天童国家森林公园常绿阔叶林种间关联和种-生境关联

doi: 10.3969/j.issn.1000-5641.201931004
基金项目: 国家自然科学基金重大国际合作项目(31210103920); 国家自然科学基金青年项目(31901103)
详细信息
    作者简介:

    杨庆松, 男, 博士, 工程师, 研究方向为森林生态学. E-mail: qsyang@des.ecnu.edu.cn

    通讯作者:

    王希华, 男, 教授, 博士生导师, 研究方向为植被生态学、恢复生态学. E-mail: xhwang@des.ecnu.edu.cn

Interspecies associations and species-habitat associations in the evergreen broad-leaved forest of Tiantong National Forest Park, Zhejiang

  • 摘要: 为探究森林群落种间关联格局与物种生境偏好的关系, 采用空间点格局分析方法和点过程模型, 分析了浙江天童国家森林公园20 hm2常绿阔叶林样地109个木本植物的种间关联格局及种-生境关联, 结果表明: ①天童样地中, 种间负关联比例高于种间正关联, 具有显著关联的种对比例随尺度增加而增加; ②89.9%的物种至少与一类生境显著关联, 73.4%的物种与生境显著正关联, 65.1%的物种与生境显著负关联; ③在较大尺度上(> 20 m), 种间空间关联结果与种对的生境偏好类型表现出很好的一致性, 说明生境的异质性是形成较大尺度种间关联格局的重要原因; 而在较小尺度上(< 5 m), 种间关联格局与种对的生境偏好没有明显关系, 可能受到其他生态学过程的影响. 研究结果为进一步探究常绿阔叶林物种的共存机制提供了理论依据.
  • 图  1  天童森林动态样地生境分类结果

    注: 图中灰色曲线代表等高线, 等高线间隔为20 m

    Fig.  1  Habitat categories within the 20 hm2 forest dynamics plot of Tiantong

    图  2  种间关联格局随空间尺度的变化

    Fig.  2  Variation in interspecies association patterns across different spatial scales

    图  4  物种空间分布与种间关联格局举例

    注: 栲树、老鼠矢、木荷和赤楠, 均同时与高海拔山脊和低海拔山脊生境正关联; 黄檀, 与干扰生境正关联; 虎皮楠, 与干扰生境负关联; 米槠, 与低海拔沟谷生境负关联; 紫楠, 与低海拔沟谷生境正关联; 枫香、格药柃无生境关联; 大叶冬青与高海拔沟谷正关联; 图中虚线表示蒙特卡洛检验的置信区间

    Fig.  4  Examples of species pair distribution and interspecies association

    图  5  不同生活型的物种间关联格局随尺度变化

    注: Etree为常绿乔木; Dtree为落叶乔木; Estree为常绿小乔木; Dstree为落叶小乔木; Eshrub为常绿灌木; Dshrub为落叶灌木

    Fig.  5  Variation in interspecies association patterns across scales in different lifeform groups

    表  1  天童20 hm2森林动态样7类生境的基本环境数据

    Tab.  1  Basic parameters of seven habitat categories in the 20 hm2 Tiantong forest dynamics plot

    生境类型海拔/m凸度/m坡度/(°)总面积/hm2个体密度/(株· hm–2)
    受干扰生境 505.0 ± 12.9 –0.1 ± 1.3 30.1 ± 4.6 1.64 2 499.4
    低海拔沟谷 390.0 ± 36.4 –3.0 ± 1.4 32.5 ± 6.1 2.96 3 930.4
    高海拔沟谷 497.4 ± 36.1 –2.5 ± 1.4 36.7 ± 5.0 2.00 4 477.0
    低海拔山脊 411.3 ± 23.2 3.5 ± 1.4 33.8 ± 5.8 1.68 4 979.2
    高海拔山脊 496.9 ± 35.3 3.8 ± 1.5 37.1 ± 5.7 1.80 5 478.9
    低海拔坡面 399.6 ± 32.4 –0.3 ± 1.3 37.0 ± 5.4 6.24 5 217.1
    高海拔坡面 506.4 ± 40.3 0.0 ± 1.4 38.6 ± 4.8 3.68 5 199.5
    下载: 导出CSV

    表  2  种-生境关联检验结果

    Tab.  2  Results of species-habitat association test

    生境类型正关联物种数负关联物种数生境关联物种总数
    干扰生境17(14)22(5)39
    低海拔沟谷9(5)25(5)34
    高海拔沟谷8(6)12(4)20
    低海拔山脊14(0)28(20)42
    高海拔山脊25(3)27(20)52
    低海拔坡面9(2)0(0)9
    高海拔坡面19(6)8(4)27
    总计80(73.4%)71(65.1%)98(89.9%)
    注: 括号内数字为落叶树种的数目, “总计”中表示该物种数占总物种数(109)的比例
    下载: 导出CSV

    表  3  基于种对生境偏好类型的种间关联性统计

    Tab.  3  Interspecies association classified by habitat preference

    种对类型种对数量种间关联性物种对比例/%
    1 m2 m5 m10 m20 m30 m40 m50 m
    I71534.849.768.781.387.789.991.992.4
    0.61.43.24.33.53.13.53.2
    64.649.028.114.48.87.04.64.3
    II1 5460.81.22.44.34.95.46.58.0
    4.110.227.946.964.271.774.975.0
    95.188.669.748.830.922.918.617.1
    III3 6256.810.318.024.230.333.234.334.8
    2.76.316.224.633.737.339.140.4
    90.683.465.851.336.029.626.724.9
    注: I 为种对均偏好同一生境; II 为种对与同一生境偏好相异; III 为中间类型
    下载: 导出CSV
  • [1] HE F, LEGENDRE P, LAFRANKIE J V. Distribution patterns of tree species in a Malaysian tropical rain forest [J]. Journal of Vegetation Science, 1997(8): 105-114.
    [2] WIEGAND T, MOLONEY K. Rings, circles, and null‐models for point pattern analysis in ecology [J]. Oikos, 2004, 104: 209-229. DOI:  10.1111/j.0030-1299.2004.12497.x.
    [3] WANG X, WIEGAND T, HAO Z, et al. Species associations in an old-growth temperate forest in north-eastern China [J]. Journal of Ecology, 2010, 98: 674-686. DOI:  10.1111/j.1365-2745.2010.01644.x.
    [4] WIEGAND T, URIARTE M, KRAFT N J B, et al. Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes [J]. Annual Review of Ecology, Evolution, and Systematics, 2017, 48: 329-351. DOI:  10.1146/annurev-ecolsys-110316-022936.
    [5] DIGGLE P J. Statistical Analysis of Point Patterns[M]. London: Arnold, 2003.
    [6] WIEGAND T, GUNATILLEKE S, GUNATILLEKE N. Species associations in a heterogeneous Sri Lankan Dipterocarp Forest [J]. The American Naturalist, 2007, 170: E77-E95. DOI:  10.1086/521240.
    [7] HUBBELL S P. The Unified Neutral Theory of Biodiversity and Biogeography[M]. New Jersy: Princeton University Press, 2001.
    [8] GETZIN S, WIEGAND T, WIEGAND K, et al. Heterogeneity influences spatial patterns and demographics in forest stands [J]. Journal of Ecology, 2008, 96: 807-820. DOI:  10.1111/j.1365-2745.2008.01377.x.
    [9] GLEASON H A. The individualistic concept of the plant association [J]. Bulletin of the Torrey Botanical Club, 1926, 53: 7-26. DOI:  10.2307/2479933.
    [10] GREIG-SMITH P. Quantitative Plant Ecology[M]. California: University of California Press, 1983.
    [11] PHILLIPS O L, VARGAS P N, MONTEAGUDO A L, et al. Habitat association among Amazonian tree species: A landscape-scale approach [J]. Journal of Ecology, 2003, 91: 757-775. DOI:  10.1046/j.1365-2745.2003.00815.x.
    [12] GUNATILLEKE C, GUNATILLEKE I, ESUFALI S, et al. Species-habitat associations in a Sri Lankan Dipterocarp Forest [J]. Journal of Tropical Ecology, 2006, 22: 371-384. DOI:  10.1017/S0266467406003282.
    [13] VINCENT G, MOLINO J F, MARESCOT L, et al. The relative importance of dispersal limitation and habitat preference in shaping spatial distribution of saplings in a tropical moist forest: A case study along a combination of hydromorphic and canopy disturbance gradients [J]. Annals of Forest Science, 2011, 68: 357-370. DOI:  10.1007/s13595-011-0024-z.
    [14] 谢玉彬, 马遵平, 杨庆松, 等. 基于地形因子的天童地区常绿树种和落叶树种共存机制研究 [J]. 生物多样性, 2012, 20: 159-167.
    [15] HARMS K, CONDIT R, HUBBELL S, et al. Habitat associations of trees and shrubs in a 50 ha neotropical forest plot [J]. Journal of Ecology, 2001, 89: 947-959. DOI:  10.1111/j.1365-2745.2001.00615.x.
    [16] VALENCIA R, FOSTER R B, VILLA G, et al. Tree species distributions and local habitat variation in the Amazon: Large forest plot in eastern Ecuador [J]. Journal of Ecology, 2004, 92: 214-229. DOI:  10.1111/j.0022-0477.2004.00876.x.
    [17] PLOTKIN J B, CHAVE J, ASHTON P S. Cluster analysis of spatial patterns in Malaysian tree species [J]. The American Naturalist, 2002, 160: 629-644. DOI:  10.1086/342823.
    [18] SEIDLER T G, PLOTKIN J B. Seed dispersal and spatial pattern in tropical trees [J]. PLoS Biology, 2006(4): e344.
    [19] JANZEN D H. Herbivores and the number of tree species in tropical forests [J]. The American Naturalist, 1970, 104: 501-528.
    [20] TILMAN D. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101: 10854-10861. DOI:  10.1073/pnas.0403458101.
    [21] CALLAWAY R M, WALKER L R. Competition and facilitation: A synthetic approach to interactions in plant communities [J]. Ecology, 1997, 78: 1958-1965. DOI:  10.1890/0012-9658(1997)078[1958:CAFASA]2.0.CO;2.
    [22] YANG Q S, SHEN G C, LIU H M, et al. Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species: Life stage matters [J]. PLoS ONE, 2016(11): e0156326.
    [23] HARMS T M, DINSMORE S J. Spatial scale matters when modeling avian co-occurrence [J]. Ecosphere, 2016(7): e01288.
    [24] JOHN R, DALLING J W, HARMS K E, et al. Soil nutrients influence spatial distributions of tropical tree species [J]. Proceedings of the National Academy of Sciences, 2007, 104: 864-869. DOI:  10.1073/pnas.0604666104.
    [25] 杨庆松, 马遵平, 谢玉彬, 等. 浙江天童 20ha 常绿阔叶林动态监测样地的群落特征 [J]. 生物多样性, 2011, 19: 215-223.
    [26] 宋永昌, 王祥荣. 浙江天童国家森林公园的植被和区系[M]. 上海: 上海科学技术文献出版社, 1995.
    [27] CONDIT R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and A Comparison with Other Plots[M]. USA: Springer. 1998.
    [28] SHEN G C, YU M J, HU X S, et al. Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity [J]. Ecology, 2009, 90: 3033-3041. DOI:  10.1890/08-1646.1.
    [29] BADDELEY A, TURNER R. Spatstat: An R package for analyzing spatial point patterns [J]. Journal of Statistical Software, 2005(12): 1-42.
    [30] ITOH A, OHKUBO T, NANAMI S, et al. Comparison of statistical tests for habitat associations in tropical forests: A case study of sympatric dipterocarp trees in a Bornean forest [J]. Forest Ecology and Management, 2010, 259: 323-332. DOI:  10.1016/j.foreco.2009.10.022.
    [31] URIARTE M, CONDIT R, CANHAM C D, et al. A spatially explicit model of sapling growth in a tropical forest: Does the identity of neighbours matter [J]. Journal of Ecology, 2004, 92: 348-360. DOI:  10.1111/j.0022-0477.2004.00867.x.
    [32] BAR-MASSADA A, YANG Q S, SHEN G C, et al. Tree species co-occurrence patterns change across grains: Insights from a subtropical forest [J]. Ecosphere, 2018, 9(5): e02213. DOI:  10.1002/ecs2.2213.
    [33] LEGENDRE P. Species associations: The kendall coefficient of concordance revisited [J]. Journal of Agricultural, Biological, and Environmental Statistics, 2005(10): 226-245.
    [34] PETERS H A. Neighbour‐regulated mortality: The influence of positive and negative density dependence on tree populations in species‐rich tropical forests [J]. Ecology Letters, 2003(6): 757-765.
    [35] MAESTRE F T, CALLAWAY R M, VALLADARES F, et al. Refining the stress-gradient hypothesis for competition and facilitation in plant communities [J]. Journal of Ecology, 2009, 97: 199-205. DOI:  10.1111/j.1365-2745.2008.01476.x.
    [36] 张炜平, 潘莎, 贾昕, 等. 植物间正相互作用对种群动态和群落结构的影响: 基于个体模型的研究进展 [J]. 植物生态学报, 2013, 37: 571-582.
    [37] CONDIT R, ASHTON P S, BAKER P, et al. Spatial patterns in the distribution of tropical tree species [J]. Science, 2000, 288: 1414-1418. DOI:  10.1126/science.288.5470.1414.
    [38] KRAFT N J, VALENCIA R, ACKERLY D D. Functional traits and niche-based tree community assembly in an Amazonian forest [J]. Science, 2008, 322: 580-582. DOI:  10.1126/science.1160662.
    [39] ADLER P B, FAJARDO A, KLEINHESSELINK A R, et al. Trait-based tests of coexistence mechanisms [J]. Ecology Letters, 2013, 16: 1294-1306. DOI:  10.1111/ele.12157.
    [40] FANG X F, SHEN G C, YANG Q S, et al. Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest [J]. Journal of Vegetation Science, 2017, 28: 379-388. DOI:  10.1111/jvs.12496.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  180
  • HTML全文浏览量:  140
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 网络出版日期:  2019-12-27
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回