中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究

黄斌冰 谢琰 谢文辉 赵振杰 李欣

黄斌冰, 谢琰, 谢文辉, 赵振杰, 李欣. 基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究[J]. 华东师范大学学报(自然科学版), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001
引用本文: 黄斌冰, 谢琰, 谢文辉, 赵振杰, 李欣. 基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究[J]. 华东师范大学学报(自然科学版), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001
HUANG Binbing, XIE Yan, XIE Wenhui, ZHAO Zhenjie, LI Xin. Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001
Citation: HUANG Binbing, XIE Yan, XIE Wenhui, ZHAO Zhenjie, LI Xin. Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001

基于微液滴的 ZnO 纳米结构制备及荧光检测性能研究

doi: 10.3969/j.issn.1000-5641.201933001
基金项目: 国家自然科学基金(11574084, 11774091, 11704122, 51302085, 51572086)
详细信息
    通讯作者:

    赵振杰, 男, 教授, 博士生导师, 研究方向为磁性材料与传感器. E-mail: zjzhao@phy.ecnu.edu.cn

    李 欣, 女, 副教授, 硕士生导师, 研究方向为微流控技术. E-mail: xli@phy.ecnu.edu.cn

  • 中图分类号: O611

Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets

  • 摘要: 基于液滴微反应器, 通过水热法合成 ZnO 纳米结构. 该芯片集成了多种功能单元, 包括用于液滴生成的T形通道, 液滴汇合的 Y 形通道, 以及快速混合和观察纳米结构形成的 S 形通道. 通过调节水相和油相的流量改变液滴的尺寸, 研究微液滴中制备的纳米结构的形貌和尺寸, 并利用硫氰酸荧光素标记的羊抗牛 IgG 研究其荧光检测性能. 该工作表明, 通过流体动力学耦合形成的微液滴可制备 ZnO 纳米结构, 其颗粒形貌和尺寸随着液滴尺寸的变化而改变. 加热温度为 75 ℃, 油相、氨水、锌盐溶液流量分别为600、30、90 μL/h时制备的ZnO纳米结构具有最优的荧光检测性能.
  • 图  1  微流控芯片示意图

    Fig.  1  Schematic diagram of the microfluidic chip

    图  2  微液滴技术制备纳米结构的流程图

    Fig.  2  Process diagram for preparation of the nanostructure by microdroplet technology

    图  3  ZnO纳米结构对FITC-anti bovine IgG的检测示意图

    Fig.  3  Schematic diagram of a ZnO nanostructure for the detection of FITC-anti bovine IgG

    图  4  不同油相流量条件下的液滴形成与融合过程

    Fig.  4  The droplet formation and fusion process under different oil phase flow conditions

    图  5  油相流体流量与液滴尺寸关系图

    Fig.  5  Diagram of oil phase fluid flow and droplet size

    图  6  不同流量比条件下合成ZnO纳米结构的AFM(a)—(b)和SEM(f)—(j)图

    注:油相流量为600 μL/h, 氨水的流量为30 μL/h, 氨水与锌盐溶液的流量比为1 : 1—1 : 5

    Fig.  6  AFM (a)—(b)and SEM (f)—(j) of ZnO nanostructure synthesized under different flow rate ratios

    图  7  ZnO纳米结构的尺寸变化

    Fig.  7  Size change of the ZnO nanostructure

    图  8  ZnO纳米结构XRD(a), EDS(b)图

    Fig.  8  XRD pattern(a)and EDS (b) diagram of ZnO nanomaterials

    图  9  荧光强度随着流量比变化的曲线分布图

    注:(a)背景干扰图;(b)—(f)加热温度为75 ℃, 在这5组不同流量比下(1 : 1, 1 : 2, 1 : 3, 1 : 4, 1 : 5)合成的ZnO纳米结构检测浓度为1 μg/mL的FITC-anti bovine IgG的荧光照片

    Fig.  9  Diagram of the fluorescence intensity as a function of the flow rate ratio

  • [1] TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: Possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229-251. DOI:  10.1002/adma.201102752.
    [2] LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications [J]. Chemical Society Reviews, 2015, 44(1): 362-381. DOI:  10.1039/C4CS00269E.
    [3] LI Q L, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications [J]. Water Research, 2008, 42(18): 4591-4602. DOI:  10.1016/j.watres.2008.08.015.
    [4] HUANG X, ZENG Z Y, ZHANG H. Metal dichalcogenide nanosheets: preparation, properties and applications [J]. Chemical Society Reviews, 2013, 42(5): 1934-1946. DOI:  10.1039/c2cs35387c.
    [5] GUO L X, SHI Y C, LIU X F, et al. Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips [J]. Biosensors and Bioelectronics, 2018, 99: 368-374. DOI:  10.1016/j.bios.2017.08.003.
    [6] SURESH G, RAMANUJAN R V, CHONG T W, et al. Poly(N-isopropyl acrylamide) coated magnetite nanoparticles as contrast agents for magnetic resonance imaging [J]. Nanoscience and Nanotechnology Letters, 2015, 7(1): 15-19. DOI:  10.1166/nnl.2015.1944.
    [7] DEATSCH A E, EVANS B A. Heating efficiency in magnetic nanoparticle hyperthermia [J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 163-172. DOI:  10.1016/j.jmmm.2013.11.006.
    [8] WANG Z L. From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures [J]. MRS Bulletin, 2012, 37(9): 814-827. DOI:  10.1557/mrs.2012.186.
    [9] ARYA S K, SAHA S, RAMIREZ-VICK J E, et al. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review [J]. Analytica Chimica Acta, 2012, 737: 1-21. DOI:  10.1016/j.aca.2012.05.048.
    [10] DORNIANI D, BIN HUSSEIN M Z, KURA A U, et al. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system [J]. Drug Design Development and Therapy, 2013(7): 1015-1026.
    [11] WANG H Y, XU L, WU Y Q, et al. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films [J]. Applied Surface Science, 2016, 387: 1281-1284. DOI:  10.1016/j.apsusc.2016.06.092.
    [12] GIL S, SILVA J M, MANO J F. Magnetically multilayer polysaccharide membranes for biomedical applications [J]. Acs Biomaterials Science & Engineering, 2015, 1(10): 1016-1025.
    [13] ZHOU X T, LIN T H, LIU Y H, et al. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation [J]. Acs Applied Materials & Interfaces, 2013, 5(20): 10067-10073.
    [14] GUO L X, SHI Y C, ZHAO Z J, et al. Fabrication and fluorescence biodetection of ZnO nanorods using microfluidic technology [J]. Journal of Inorganic Materials, 2018, 33(10): 1103-1109. DOI:  10.15541/jim20180005.
    [15] ALIVISATOS A P. Birth of a nanoscience building block [J]. Acs Nano, 2008, 2(8): 1514-1516. DOI:  10.1021/nn800485f.
    [16] BURDA C, CHEN X B, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105(4): 1025-1102. DOI:  10.1021/cr030063a.
    [17] GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices [J]. Chemical Society Reviews, 2013, 42(7): 2986-3017. DOI:  10.1039/c2cs35310e.
    [18] MARRE S, JENSEN K F. Synthesis of micro and nanostructures in microfluidic systems [J]. Chemical Society Reviews, 2010, 39(3): 1183-1202. DOI:  10.1039/b821324k.
    [19] WANG J M, SONG Y J. Microfluidic synthesis of nanohybrids [J]. Small, 2017, 13(18): 19.
    [20] DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane) [J]. Analytical Chemistry, 1998, 70(23): 4974-4984. DOI:  10.1021/ac980656z.
    [21] CARRUTHERS C W, GERDTS JR C, JOHNSON M D, et al. A microfluidic, high throughput protein crystal growth method for microgravity [J]. PloS One, 2013, 8(11): e82298.
    [22] FEUERBORN A, PRASTOWO A, COOK P R, et al. Merging drops in a teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening [J]. Lab on a Chip, 2015, 15(18): 3766-3775. DOI:  10.1039/C5LC00726G.
    [23] NIU G, RUDITSKIY A, VARA M, et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors [J]. Chemical Society Reviews, 2015, 44(16): 5806-5820. DOI:  10.1039/C5CS00049A.
    [24] SAUTER C, DHOUIB K, LORBER B. From macrofluidics to microfluidics for the crystallization of biological macromolecules [J]. Crystal Growth & Design, 2007, 7(11): 2247-2250.
    [25] PHILLIPS T W, LIGNOS I G, MACEICZYK R M, et al. Nanocrystal synthesis in microfluidic reactors: Where next? [J]. Lab on a Chip, 2014, 14(17): 3172-3180. DOI:  10.1039/C4LC00429A.
    [26] PAN L J, TU J W, MA H T, et al. Controllable synthesis of nanocrystals in droplet reactors [J]. Lab on a Chip, 2018, 18(1): 41-56. DOI:  10.1039/C7LC00800G.
    [27] REDDY L H, ARIAS J L, NICOLAS J, et al. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications [J]. Chemical Reviews, 2012, 112(11): 5818-5878. DOI:  10.1021/cr300068p.
    [28] BARET J C. Surfactants in droplet-based microfluidics [J]. Lab on a Chip, 2012, 12(3): 422-433. DOI:  10.1039/C1LC20582J.
    [29] COSSAIRT B M. Shining light on indium phosphide quantum dots: Understanding the interplay among precursor conversion, nucleation, and growth [J]. Chemistry of Materials, 2016, 28(20): 7181-7189. DOI:  10.1021/acs.chemmater.6b03408.
    [30] DEMIANETS L N, KOSTOMAROV D V, KUZ'MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions [J]. Crystallography Reports, 2002, 47: S86-S98. DOI:  10.1134/1.1529962.
    [31] JANG J M, KIM S D, CHOI H M, et al. Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process [J]. Materials Chemistry and Physics, 2009, 113(1): 389-394. DOI:  10.1016/j.matchemphys.2008.07.108.
    [32] LIZAMA-TZEC F I, GARCIA-RODRIGUEZ R, RODRIGUEZ-GATTORNO G, et al. Influence of morphology on the performance of ZnO-based dye-sensitized solar cells [J]. Rsc Advances, 2016, 6(44): 37424-37433. DOI:  10.1039/C5RA25618F.
    [33] MOHAMMED M I, DESMULLIEZ M P Y. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review [J]. Lab on a Chip, 2011, 11(4): 569-595. DOI:  10.1039/C0LC00204F.
  • 加载中
图(9)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  130
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 刊出日期:  2020-03-01

目录

    /

    返回文章
    返回