中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南水北调工程对长江口盐水入侵和淡水资源的影响

苏爱平 吕行行 吴宇帆

苏爱平, 吕行行, 吴宇帆. 南水北调工程对长江口盐水入侵和淡水资源的影响[J]. 华东师范大学学报(自然科学版), 2020, (3): 32-42. doi: 10.3969/j.issn.1000-5641.201941031
引用本文: 苏爱平, 吕行行, 吴宇帆. 南水北调工程对长江口盐水入侵和淡水资源的影响[J]. 华东师范大学学报(自然科学版), 2020, (3): 32-42. doi: 10.3969/j.issn.1000-5641.201941031
SU Aiping, LÜ Hanghang, WU Yufan. Impact of the South-to-North Water Diversion Project on saltwater intrusion and freshwater resources in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2020, (3): 32-42. doi: 10.3969/j.issn.1000-5641.201941031
Citation: SU Aiping, LÜ Hanghang, WU Yufan. Impact of the South-to-North Water Diversion Project on saltwater intrusion and freshwater resources in the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2020, (3): 32-42. doi: 10.3969/j.issn.1000-5641.201941031

南水北调工程对长江口盐水入侵和淡水资源的影响

doi: 10.3969/j.issn.1000-5641.201941031
详细信息
    通讯作者:

    苏爱平, 女, 高级工程师, 从事水利、水电、河口海岸工程等研究. E-mail: su_aiping@126.com

  • 中图分类号: P731.2

Impact of the South-to-North Water Diversion Project on saltwater intrusion and freshwater resources in the Changjiang Estuary

  • 摘要: 南水北调工程为跨流域调水工程, 其对于长江口淡水资源变迁的影响是当今研究热点之一. 本文应用三维数学模型, 研究南水北调东线和中线工程短期和远期调水方案对长江河口盐水入侵和淡水资源的影响. 结果表明, 在2月中下旬一个大小潮周期中, 东风西沙水库、陈行水库和青草沙水库取水口盐度大于0.45的不宜取水时间分别为7.74、3.08和2.72 d. 同时, 在东线和中线工程短期调水1 000 m3/s情况下, 长江河口盐水入侵加剧, 尤其在北港、北槽和南槽拦门沙区域及其北支上段盐度上升最为明显, 出现了量值超过0.5的大面积区域, 南支淡水区域减小. 在2月中下旬一个大小潮周期中东风西沙水库、陈行水库和青草沙水库不宜取水的时间分别增长了1.43、2.14和2.13 d. 在东线和中线工程远期调水1 600 m3/s情况下, 整个河口盐度的上升更为明显, 在北港、北槽和南槽拦门沙出现了盐度超过1的大范围区域, 小范围区域盐度超过了1.5, 南水淡水范围进一步减小. 在2月中下旬一个大小潮周期中东风西沙水库、陈行水库和青草沙水库不宜取水的时间分别增加了1.49、3.08和3.08 d.
  • 图  1  长江河口形势图

    注: 黑点为2018年3月南槽3个船测站A、B、C和3个浮标测站浮标1、浮标2、浮标3位置; 红点为水库取水口位置; 3条纵向断面(P1—P3)黑线标注, 用于盐水入侵分析; W为崇明东滩气象站位置

    Fig.  1  Map of the Changjiang Estuary

    图  2  船只测站B中潮后小潮期间表层(左侧)和底层(右侧)的流速、流向及盐度随时间变化的分布

    注: 红点为实测值, 黑线为模拟值

    Fig.  2  Temporal variation in the water velocity, direction, and salinity in the neap tide after the middle tide at the surface layer (left panel) and bottom layer (right panel) at monitoring site B

    图  3  浮标测站浮标2的表层流速、流向和盐度随时间变化的分布

    注: 红点为实测值, 黑线为模拟值

    Fig.  3  Temporal variation in water velocity, direction, and salinity at the surface layer of the monitoring site Buoy2

    图  4  工况1大潮(左侧)和小潮(右侧)期间表层(a, b)和底层(c, d)的平均盐度分布

    注: 绿线为0.45等盐度线, 红线为1等盐度线, 橘线为2等盐度线, 下同

    Fig.  4  Distribution of the tidal average salinity at the surface layer (a, b) and bottom layer (c, d) during spring tide (left panel) and neap tide (right panel) in Exp1

    图  5  工况1中大潮(左侧)和小潮(右侧)期间沿纵向剖面P1(a, b)、P2(c, d)和P3(e, f)的平均盐度分布

    Fig.  5  Distribution of the tidal average salinity along the longitudinal section P1 (a, b), P2 (c, d), and P3 (e, f) during spring tide (left panel) and neap tide (right panel) in Exp1

    图  6  青草沙水库取水口水位(a), 以及东风西沙水库、陈行水库、青草沙水库取水口表层盐度(b—d)随时间的变化

    注: 黑线为工况1, 红线为工况2, 紫线为工况3; 水平绿色虚线为盐度0.45, 饮用水标准

    Fig.  6  Temporal variation in the water level(a) at the water intake of the Qingcaosha Reservoir, and in surface salinity(b—d) at the water intake of the Dongfengxisha, Chenhang, and Qingcaosha Reservoirs

    图  7  大潮(左侧)和小潮(右侧)期间表层(a, b)和底层(c, d)工况2与工况1的平均盐度差值分布

    Fig.  7  Difference distribution of the tidal average salinity at the surface layer (a, b) and the bottom layer (c, d) between Exp2 and Exp1 during spring tide (left panel) and neap tide (right panel)

    图  8  工况2大潮(左侧)和小潮(右侧)期间沿纵向剖面P1(a, b)、P2(c, d)和P3(e, f)的平均盐度分布

    Fig.  8  Distribution of the tidal average salinity along the longitudinal section P1 (a, b), P2 (c, d), and P3 (e, f) during spring tide (left panel) and neap tide (right panel) in Exp2

    图  9  大潮(左侧)和小潮(右侧)期间表层(a, b)和底层(c, d)工况3与工况1的平均盐度差值分布

    Fig.  9  Difference distribution of the tidal average salinity at the surface layer (a, b) and the bottom layer (c, d) between Exp3 and Exp1 during spring tide (left panel) and neap tide (right panel)

    图  10  工况3大潮(左侧)和小潮(右侧)期间沿纵向剖面P1(a, b)、P2(c, d)和P3(e, f)的平均盐度分布

    Fig.  10  Distribution of the tidal average salinity along the longitudinal section P1 (a, b), P2 (c, d), and P3 (e, f) during spring tide (left panel) and neap tide (right panel) in Exp3

    表  1  用于测站表层和底层模拟与实测流速比较的相关系数(CC)、均方差(RMSE)和技术分数(SS)

    Tab.  1  Correlation coefficients (CC), root-mean-square error (RMSE), and skill scores (SS) for comparing the modelled and observed water velocity at the surface and bottom layer of the monitoring sites

    测站RMSE/(m·s–1)CCSS
    表层 A 0.35 0.63 0.79
    B 0.23 0.93 0.89
    C 0.34 0.75 0.85
    浮标1 0.34 0.73 0.84
    浮标2 0.27 0.88 0.93
    浮标3 0.24 0.86 0.92
    底层 A 0.21 0.51 0.71
    B 0.21 0.75 0.86
    C 0.18 0.73 0.84
    浮标1 0.11 0.78 0.87
    浮标2 0.12 0.84 0.90
    浮标3 0.10 0.80 0.88
    下载: 导出CSV

    表  2  用于测站表层和底层模拟与实测盐度比较的相关系数(CC)、均方差(RMSE)和技术分数(SS)

    Tab.  2  Correlation coefficients (CC), root-mean-square error (RMSE), and skill scores (SS) for comparing the modelled and observed salinity at the surface and bottom layer of the monitoring sites

    测站RMSECCSS
    表层 A 1.88 0.73 0.85
    B 2.49 0.85 0.90
    C 2.24 0.71 0.80
    浮标1 2.33 0.87 0.93
    浮标2 1.73 0.92 0.96
    浮标3 0.36 0.83 0.89
    底层 A 2.14 0.66 0.80
    B 1.57 0.92 0.95
    C 1.30 0.86 0.92
    浮标1 1.31 0.87 0.92
    浮标2
    浮标3 0.29 0.90 0.95
    下载: 导出CSV
  • [1] PRITCHARD D W. The dynamic structure of a coastal plain estuary [J]. J Marine Res, 1956, 15: 33-42.
    [2] SIMPSON J H, BROWN J, MATTHEWS J, et al. Tidal straining, density currents, and stirring in the control of estuarine stratification [J]. Estuaries, 1990, 13(2): 125-132. DOI:  10.2307/1351581.
    [3] GEYER W R. The importance of suppression of turbulence by stratification on the estuarine turbidity maximum [J]. Estuaries and Coasts, 1993, 16(1): 113-125. DOI:  10.2307/1352769.
    [4] PRANDLE D. On salinity regimes and the vertical structure of residual flows in narrow tidal estuaries [J]. Estuarine, Coastal and Shelf Science, 1985, 20(5): 615-635. DOI:  10.1016/0272-7714(85)90111-8.
    [5] 沈焕庭, 茅志昌, 朱建荣. 长江河口盐水入侵 [M]. 北京: 海洋出版社, 2003: 41-56
    [6] PRANDLE D. Dynamical controls on estuarine bathymetry: Assessment against UK database [J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 282-288. DOI:  10.1016/j.ecss.2006.02.009.
    [7] HANSEN D V, RATTRAY J M. Gravitational circulation in straits and estuaries [R]. Seattle, Washington: Department of Oceanography, University of Washington, 1966.
    [8] LI L, ZHU J R, WU H. Impacts of wind stress on saltwater intrusion in the Yangtze Estuary [J]. Science China Earth Sciences, 2012, 55(7): 1178-1192. DOI:  10.1007/s11430-011-4311-1.
    [9] IPPEN A T, HARLEMAN D R F. One-dimensional analysis of salinity intrusion in estuaries [R]. Vicksburg, Mississippi: Committee on Tidal Hydraulics Waterways Experiment Station, 1961.
    [10] SIMPSON J H, HUNTER J R. Fronts in the Irish Sea [J]. Nature, 1974, 250: 404-406. DOI:  10.1038/250404a0.
    [11] PRANDLE D, LANE A. Sensitivity of estuaries to sea level rise: Vulnerability indices. Estuarine [J]. Coastal and Shelf Science, 2015, 160: 60-68. DOI:  10.1016/j.ecss.2015.04.001.
    [12] WU H, ZHU J R, CHEN B R, et al. Quantitative relationship of runoff and tide to saltwater spilling over from the North Branch in the Changjiang Estuary: A numerical study [J]. Estuarine Coastal Shelf Science, 2006, 69(1/2): 125-132. DOI:  10.1016/j.ecss.2006.04.009.
    [13] 吴辉, 朱建荣. 长江河口北支倒灌盐水输送机制分析 [J]. 海洋学报(中文版), 2007(1): 17-25.
    [14] WU H, ZHU J R, CHOI B H. Links between saltwater intrusion and subtidal circulation in the Changjiang Estuary: A model-guided study [J]. Continental Shelf Research, 2010, 30(17): 1891-1905. DOI:  10.1016/j.csr.2010.09.001.
    [15] ZHU J R, BAO D Y. The effects of river regime changes in the Changjiang Estuary on hydrodynamics and salinity intrusion in the past 60 years I. River regime changes [J]. Haiyang Xuebao, 2016, 38(12): 11-22. DOI:  10.3969/j.issn.0253-4193.2016.12.0012.
    [16] QIU C, ZHU J R, GU Y L. Impact of seasonal tide variation on saltwater on saltwater intrusion in the ChangJiang River estuary [J]. Chinese Journal of Oceanology and Limnology, 2012, 30(2): 342-351. DOI:  10.1007/s00343-012-1115-x.
    [17] LYU H H, ZHU J R. Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary [J]. Journal of Hydrology, 2018, 557: 838-850. DOI:  10.1016/j.jhydrol.2018.01.010.
    [18] ZHU J R, QIU C. Responses of river discharge and sea level rise to climate change and human activity in the Changjiang River Estuary embodied in a numerical model [J]. 华东师范大学学报(自然科学版), 2015(4): 54-64.
    [19] 沈焕庭, 茅志昌, 顾玉亮. 东线南水北调工程对长江口咸水入侵影响及对策 [J]. 长江流域资源与环境, 2002, 11(2): 150-154. DOI:  10.3969/j.issn.1004-8227.2002.02.011.
    [20] 李燕. 南水北调东线工程对长江口咸水入侵的影响分析 [J]. 治淮, 2002(5): 13-15. DOI:  10.3969/j.issn.1001-9243.2002.05.008.
    [21] 黄惠明. 长江口盐水入侵一、二维数值计算研究 [D]. 南京: 河海大学海洋学院, 2006.
    [22] XU K, ZHU J R, GU Y L. Impact of the eastern Water Diversion from the South to the North Project on the saltwater intrusion in the Changjiang Estuary [J]. Acta Oceanologica Sinica, 2012, 31(3): 47-58. DOI:  10.1007/s13131-012-0205-0.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  68
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 网络出版日期:  2020-05-29
  • 刊出日期:  2020-05-01

目录

    /

    返回文章
    返回