中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学微腔中WSe2激子与光子耦合效应的研究

梁爽 钟义驰 谢微

梁爽, 钟义驰, 谢微. 光学微腔中WSe2激子与光子耦合效应的研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 112-118. doi: 10.3969/j.issn.1000-5641.202022003
引用本文: 梁爽, 钟义驰, 谢微. 光学微腔中WSe2激子与光子耦合效应的研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 112-118. doi: 10.3969/j.issn.1000-5641.202022003
LIANG Shuang, ZHONG Yichi, XIE Wei. Coupling behavior of WSe2 exciton and photon in an optical microcavity[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 112-118. doi: 10.3969/j.issn.1000-5641.202022003
Citation: LIANG Shuang, ZHONG Yichi, XIE Wei. Coupling behavior of WSe2 exciton and photon in an optical microcavity[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 112-118. doi: 10.3969/j.issn.1000-5641.202022003

光学微腔中WSe2激子与光子耦合效应的研究

doi: 10.3969/j.issn.1000-5641.202022003
基金项目: 国家自然科学基金(11674097)
详细信息
    通讯作者:

    谢 微, 男, 研究员, 博士生导师, 研究方向为固态环境中光-物质相互作用及其调控.E-mail: wxie@phy.ecnu.edu.cn

  • 中图分类号: O472.3

Coupling behavior of WSe2 exciton and photon in an optical microcavity

  • 摘要: 研究了300 K下, 自制的法布里-珀罗(Fabry–Pérot, F-P)半导体微腔中, 光场与WSe2单分子薄膜激子之间的强弱耦合作用. 利用集成角分辨功能的显微荧光/白光反射光谱系统研究了样品的光学性质, 并在强耦合区间内看到了激子极化激元的形成, 对应的拉比分裂能量为46.7 meV. 理论拟合结果跟实验现象吻合, 为激子极化激元相干特性的进一步研究奠定了基础, 也为未来的工业光电器件应用提供了思路.
  • 图  1  样品结构示意图

    Fig.  1  Diagram of a sample structure

    图  2  微腔A中强耦合现象及光路配置

    Fig.  2  Strong coupling in microcavity A and optical path configuration

    图  3  微腔B中弱耦合现象

    Fig.  3  Weak coupling in microcavity B

  • [1] WEISBUCH C, NISHIOKA M, ISHIKAWA A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity [J]. Physical Review Letters, 1992, 69(23): 3314-3317.
    [2] DENG H, WEIHS G, SANTORI C, et al. Condensation of semiconductor microcavity exciton polaritons [J]. Science, 2002, 298(5591): 199-202.
    [3] WOUTERS M, CARUSOTTO I. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons [J]. Physical Review Letters, 2007, 99(14): 140402.
    [4] KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons [J]. Nature, 2006, 443: 409-414.
    [5] BALILI R, HARTWELL V, SNOKE D, et al. Bose-Einstein condensation of microcavity polaritons in a trap [J]. Science, 2007, 316(5827): 1007-1010.
    [6] UTSUNOMIYA S, TIAN L, ROUMPOS G, et al. Observation of Bogoliubov excitations in exciton-polariton condensates [J]. Nature Physics, 2008, 4(9): 700-705.
    [7] AMO A, SANVITTO D, LAUSSY F P, et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity [J]. Nature, 2009, 457: 291-U3.
    [8] AMO A, LEFRERE J, PIGEON S, et al. Superfluidity of polaritons in semiconductor microcavities [J]. Nature Physics, 2009, 5(11): 805-810.
    [9] SICH M, KRIZHANOVSKII D N, SKOLNICK M S, et al. Observation of bright polariton solitons in a semiconductor microcavity [J]. Nature Photonics, 2012, 6(1): 50-55.
    [10] WERTZ E, FERRIER L, SOLNYSHKOV D D, et al. Spontaneous formation and optical manipulation of extended polariton condensates [J]. Nature Physics, 2010, 6(11): 860-864.
    [11] GEIM A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
    [12] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
    [13] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8): 17033.
    [14] SHI W, YE J T, ZHANG Y J, et al. Superconductivity series in transition metal dichalcogenides by ionic gating [J]. Scientific Reports, 2015, 8(5): 12534.
    [15] JO S, COSTANZO D, BERGER H, et al. Electrostatically induced superconductivity at the surface of WS2 [J]. Nano Letters, 2015, 15(2): 1197-1202.
    [16] MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10(4): 216-226.
    [17] PU J, TAKENOBU T S. Monolayer transition metal dichalcogenides as light sources [J]. Advanced materials, 2018, 30(33): 1707627.
    [18] KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.
    [19] WANG G, CHERNIKOV A, GLAZOV M M, et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides [J]. Reviews of Modern Physics, 2018, 90(2): 021001.
    [20] MACIEJ K, MACLEJ R, MOLAS A A, et al. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles [J]. Nanophotonics, 2017, 6(6): 1289-1308.
    [21] BALLARINI D, DE GIORGI M, CANCELLIERI E, et al. All-optical polariton transistor [J]. Nature Communication, 2013, 4(5): 1778.
    [22] DREISMANN A, OHADI H, REDONDO Y, et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates [J]. Nature Materials, 2016, 15(10): 1074-1078.
    [23] CHRISTOPOULOS S, VON HOGERSTHAL G, BALDASSARRI H, et al. Room-temperature polariton lasing in semiconductor microcavities [J]. Physical Review Letters, 2007, 98(12): 126405.
    [24] STANLET R P, HOUDRE R, OESTER U, et al. Ultrahigh finesse microcavity with distributed Bragg reflectors [J]. Applied Physics Letters, 1994, 65(15): 1883-1885.
    [25] AKAHANE Y, ASANO T, NODA S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal [J]. Nature, 2003, 425: 944-947.
    [26] SRINIVASAN K, PAINTER O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system [J]. Nature, 2007, 450: 862-865.
    [27] SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters, 2010, 10(4): 1271-1275.
    [28] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
    [29] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
    [30] YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) [J]. Physical Review B, 2012, 85(3): 033305.
    [31] GIOVANNA P, LUCIO C A. Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting [J]. Physical Review B, 1999, 5082: 59.
  • 加载中
图(3)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  276
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-06
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回