中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CdS晶体电子自旋相干动力学

郭家兴 吴真 梁盼 姜美珍 胡蓉蓉 张圆圆 冯东海

郭家兴, 吴真, 梁盼, 姜美珍, 胡蓉蓉, 张圆圆, 冯东海. CdS晶体电子自旋相干动力学[J]. 华东师范大学学报(自然科学版), 2021, (1): 92-102. doi: 10.3969/j.issn.1000-5641.202022005
引用本文: 郭家兴, 吴真, 梁盼, 姜美珍, 胡蓉蓉, 张圆圆, 冯东海. CdS晶体电子自旋相干动力学[J]. 华东师范大学学报(自然科学版), 2021, (1): 92-102. doi: 10.3969/j.issn.1000-5641.202022005
GUO Jiaxing, WU Zhen, LIANG Pan, JIANG Meizhen, HU Rongrong, ZHANG Yuanyuan, FENG Donghai. Electron spin coherence dynamics in CdS crystals[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 92-102. doi: 10.3969/j.issn.1000-5641.202022005
Citation: GUO Jiaxing, WU Zhen, LIANG Pan, JIANG Meizhen, HU Rongrong, ZHANG Yuanyuan, FENG Donghai. Electron spin coherence dynamics in CdS crystals[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 92-102. doi: 10.3969/j.issn.1000-5641.202022005

CdS晶体电子自旋相干动力学

doi: 10.3969/j.issn.1000-5641.202022005
基金项目: 国家自然科学基金(91950112); 上海市自然科学基金(19ZR1414500)
详细信息
    通讯作者:

    梁 盼, 女, 讲师, 研究方向为电子自旋超快动力学. E-mail: liangp@sdju.edu.cn

    冯东海, 男, 研究员, 研究方向为电子自旋超快动力学. E-mail: dhfeng@phy.ecnu.edu.cn

  • 中图分类号: O47

Electron spin coherence dynamics in CdS crystals

  • 摘要: 利用时间分辨克尔旋转(Time-Resolved Kerr Rotation, TRKR)光谱技术研究了纤锌矿n-CdS(n型掺杂)(0001)面单晶在不同温度、不同波长下的电子自旋相干动力学. 发现低温下该材料存在两种电子自旋信号: 一种是在较长泵浦探测波长下存在的长寿命自旋信号, 低温5 K时其自旋退相位时间长达4.8 ns, 随着温度的升高不断减小; 另一种为较短泵浦探测波长下存在的短寿命自旋信号, 其自旋退相位时间约为40 ps, 可以持续到室温, 该自旋信号几乎不受温度的影响. 研究表明, 长寿命自旋信号来自于局域电子, 而短寿命自旋信号来自于导带自由电子.
  • 图  1  a)纤锌矿CdS的能带结构和b)光学选择定则

    Fig.  1  a) Band structure and b) optical selection rules for wurtzite CdS

    图  2  时间分辨克尔旋转实验装置示意图

    Fig.  2  Schematic diagram of experimental device for time-resolved Kerr rotation measurements

    图  3  T = 5 K, B = 1 T时, CdS单晶在不同波长下的时间分辨克尔旋转光谱:a)为长寿命自旋信号; b)为短寿命自旋信号; c)相位翻转示意图

    Fig.  3  TRKR measurements in a CdS single crystal at different wavelengths for T = 5 K and B = 1 T: a) Long-lived spin signal; b) Short-lived spin signal; c) Phase inversion schematic diagram

    图  4  克尔旋转信号理论模拟: a)窄谱(黑色虚线)和宽谱(红色实线)探测的克尔旋转信号振幅随波长的依赖性对比; 中心波长分别为 b) 489.8 nm、c) 490.7 nm和 d) 488.2 nm高斯谱线上各位置点所对应的克尔旋转信号

    Fig.  4  Theoretical simulation of Kerr rotation signal: a) Comparison of the spectral dependence of Kerr rotation under the narrowband detection pulse (black dotted line) versus the broadband detection pulse (solid red line); Kerr rotation signal corresponding to each point on the Gaussian spectral line with a center wavelength of b) 489.8 nm, c) 490.7 nm, and d) 488.2 nm

    图  5  T = 5 K条件下, a)自旋退相位时间$T_2^*$和b)拉莫尔进动频率${v_{\rm{L}}}$随波长的依赖

    Fig.  5  Wavelength dependence of a) spin-dephasing time $T_2^*$ and b) Larmor precession frequency ${v_{\rm{L}}}$ at $T = 5\;{\rm{ K}}$

    图  6  T = 50 K, B = 1 T时: a)、b)不同波长下的时间分辨克尔旋转光谱;c)自旋退相位时间$T_2^*$随波长的依赖; d)拉莫尔进动频率${v_{\rm{L}}}$随波长的依赖

    Fig.  6  a), b) TRKR signals at different wavelengths; c) Dependence of the spin dephasing time, $T_2^*$ on wavelength; (d) Dependence of the Larmor precession frequency, ${v_{\rm{L}}}$ on wavelength; Where T = 50 K, B = 1 T

    图  7  T = 293 K, B = 1 T时, a)不同波长下的时间分辨克尔旋转信号和 b)自旋退相位时间$T_2^*$随波长的依赖

    Fig.  7  a) TRKR signals at different wavelengths; b) Dependence of spin dephasing time, $T_2^*$ on wavelength; Where T = 293 K and B = 1 T

    图  8  a)不同温度下自旋退相位时间$T_2^*$随波长的依赖关系; b)发光峰处波长激发的自旋信号退相位时间$T_2^*$、拉莫尔进动频率${v_{\rm{L}}}$随温度的依赖关系, 插图为发光波长随温度的依赖

    Fig.  8  a) Wavelength dependence of spin dephasing time, $T_2^*$, at different temperatures; b) Temperature dependence of the spin dephasing time, $T_2^*$, and Larmor precession frequency, ${v_{\rm{L}}}$, at the emission peak wavelength, inset shows the emission peak as a function of temperature

  • [1] OHNO Y, YOUNG D, BESCHOTEN B, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure [J]. Nature, 1999, 402(6763): 790-792.
    [2] PRINZ G A. Spin-polarized transport [J]. Physics Today, 1995, 48: 58-63.
    [3] AWSCHALOM D D, BASSETT L C, DZURAK A S, et al. Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors [J]. Science, 2013, 339(6124): 1174-1179.
    [4] HOHAGE P, BACHER G, REUTER D, et al. Coherent spin oscillations in bulk GaAs at room temperature [J]. Applied Physics Letters, 2006, 89(23): 231101.
    [5] LAI T, LIU X, XU H, et al. Temperature dependence of electron-spin coherence in intrinsic bulk GaAs [J]. Applied Physics Letters, 2006, 88(19): 192106.
    [6] LAI T, TENG L, JIAO Z, et al. Evolution of spin coherence dynamics and g factor with electron excess energy in bulk intrinsic GaAs [J]. Applied Physics Letters, 2007, 91(6): 062110.
    [7] ZAWADZKI W, PFEFFER P, BRATSCHITSCH R, et al. Temperature dependence of the electron spin g factor in GaAs [J]. Physical Review B, 2008, 78(24): 245203.
    [8] TENG L H, CHEN K, WEN J H, et al. Density dependence of electron-spin polarization and relaxation in intrinsic GaAs at room temperature [J]. Journal of Physics D: Applied Physics, 2009, 42(13): 135111.
    [9] BESCHOTEN B, JOHNSTON-HALPERIN E, YOUNG D, et al. Spin coherence and dephasing in GaN [J]. Physical Review B, 2001, 63(12): 121202.
    [10] BUß J, SCHAEFER A, SCHUPP T, et al. High temperature electron spin dynamics in bulk cubic GaN: Nanosecond spin lifetimes far above room-temperature [J]. Applied Physics Letters, 2014, 105(18): 182404.
    [11] GHOSH S, SIH V, LAU W, et al. Room-temperature spin coherence in ZnO [J]. Applied Physics Letters, 2005, 86(23): 232507.
    [12] YANG Z, LI Y, LOOK D, et al. Thermal annealing effect on spin coherence in ZnO single crystals [J]. Journal of Applied Physics, 2011, 110(1): 016101.
    [13] SPRINZL D, HORODYSKÁ P, TESAŘOVÁ N, et al. Influence of n-type doping on electron spin dephasing in CdTe [J]. Physical Review B, 2010, 82(15): 153201.
    [14] MA H, JIN Z, MA G, et al. Photon energy and carrier density dependence of spin dynamics in bulk CdTe crystal at room temperature [J]. Applied Physics Letters, 2009, 94(24): 241112.
    [15] ITO T, SHICHI W, OKAMI Y, et al. Electron spin precession observed in bulk CdTe at room temperature [J]. Physica Status Solidi C, 2009, 6(1): 319-322.
    [16] KIMEL A, PAVLOV V, PISAREV R, et al. Ultrafast dynamics of the photo-induced magneto-optical Kerr effect in CdTe at room temperature [J]. Physical Review B, 2000, 62(16): R10610.
    [17] SHIN Y J, KIM S K, PARK B H, et al. Photocurrent study on the splitting of the valence band for a CdS single-crystal platelet [J]. Physical Review B, 1991, 44(11): 5522-5526.
    [18] FENG D, LI X, JIA T, et al. Long-lived, room-temperature electron spin coherence in colloidal CdS quantum dots [J]. Applied Physics Letters, 2012, 100(12): 122406.
    [19] FENG D, SHAN L, JIA T, et al. Optical manipulation of electron spin coherence in colloidal CdS quantum dots [J]. Applied Physics Letters, 2013, 102(6): 062408.
    [20] LI X, FENG D, TONG H, et al. Hole surface trapping dynamics directly monitored by electron spin manipulation in CdS nanocrystals [J]. The Journal of Physical Chemistry Letters, 2014, 5(24): 4310-4316.
    [21] FENG D, YAKOVLEV D R, PAVLOV V V, et al. Dynamic evolution from negative to positive photocharging in colloidal CdS quantum dots [J]. Nano Letters, 2017, 17(5): 2844-2851.
    [22] TONG H, FENG D, LI X, et al. Room-temperature electron spin generation by femtosecond laser pulses in colloidal CdS quantum dots [J]. Materials, 2013, 6(10): 4523-4531.
    [23] CHEN Z. Spectrally resolved optical study of transient spin dynamics in semiconductors[D]. Colorado: University of Colorado, 2006.
    [24] HUANG J, HOANG T B, MING T, et al. Temporal and spatial valley dynamics in two-dimensional semiconductors probed via Kerr rotation [J]. Physical Review B, 2017, 95(7): 075428.
    [25] Yugova I, Glazov M, Ivchenko E, et al. Pump-probe Faraday rotation and ellipticity in an ensemble of singly charged quantum dots [J]. Physical Review B, 2009, 80(10): 104436.
    [26] PUTIKKA W AND JOYNT R. Theory of optical orientation in n-type semiconductors [J]. Physical Review B, 2004, 70(11): 113201.
    [27] LEE J, VENUGOPAL A, SIH V. Anisotropic spin dephasing of impurity-bound electron spins in ZnO [J]. Applied Physics Letters, 2015, 106(1): 012403.
    [28] BUß J, RUDOLPH J, SCHUPP T, et al. Long room-temperature electron spin lifetimes in highly doped cubic GaN [J]. Applied Physics Letters, 2010, 97(6): 062101.
    [29] BUß J, SCHUPP T, AS D, et al. Electron spin dynamics in cubic GaN [J]. Physical Review B, 2016, 94(23): 235202.
    [30] LI H P, KAM C H, LAM Y L, et al. Optical nonlinearities and photo-excited carrier lifetime in CdS at 532 nm [J]. Optics Communications, 2001, 190(1/2/3/4/5/6): 351-356.
    [31] WIESNER P AND HEIM U. Dynamics of exciton-polariton recombination in CdS [J]. Physical Review B, 1975, 11(8): 3071-3077.
    [32] ŽUTIĆ I, FABIAN J, SARMA S D. Spintronics: Fundamentals and applications [J]. Reviews of Modern Physics, 2004, 76(2): 323-410.
  • 加载中
图(8)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  60
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-14
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回