中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维电磁亥姆霍兹腔中回音壁模式研究

王倩婧 杜骏杰

王倩婧, 杜骏杰. 二维电磁亥姆霍兹腔中回音壁模式研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 119-128. doi: 10.3969/j.issn.1000-5641.202022006
引用本文: 王倩婧, 杜骏杰. 二维电磁亥姆霍兹腔中回音壁模式研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 119-128. doi: 10.3969/j.issn.1000-5641.202022006
WANG Qianjing, DU Junjie. Whispering gallery mode in a two-dimensional electromagnetic Helmholtz cavity[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 119-128. doi: 10.3969/j.issn.1000-5641.202022006
Citation: WANG Qianjing, DU Junjie. Whispering gallery mode in a two-dimensional electromagnetic Helmholtz cavity[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 119-128. doi: 10.3969/j.issn.1000-5641.202022006

二维电磁亥姆霍兹腔中回音壁模式研究

doi: 10.3969/j.issn.1000-5641.202022006
基金项目: 国家自然科学基金(11474098)
详细信息
    通讯作者:

    杜骏杰, 男, 副教授, 博士生导师, 研究方向为超光学、石墨烯电子光学. E-mail: jjdu@phy.ecnu.edu.cn

  • 中图分类号: O436.2

Whispering gallery mode in a two-dimensional electromagnetic Helmholtz cavity

  • 摘要: 基于严格的广义双级数方法, 研究了二维电磁亥姆霍兹腔内回音壁模式的激发; 在给出几种回音壁模式的激发波长的同时, 探讨了入射角、亥姆霍兹腔开口大小对回音壁模式的影响. 结果表明, 回音壁模式对入射波长和腔开口大小的改变非常敏感, 但相比而言, 固定腔的方位角不变时, 入射角在较宽范围内的变化并不影响模式的激发. 因此, 腔的开口大小对亥姆霍兹腔的性能有很大影响, 是亥姆霍兹腔设计中需要重点关注的参量. 而当这些亥姆霍兹腔用于构建人工电磁材料时, 由于回音壁模式可在较宽的入射角下激发, 因而不需要严格要求每个腔的开口方向, 材料的加工难度也不大.
  • 图  1  在一个封闭的腔内激发的回音壁模式的示意图

    Fig.  1  Schematic demonstration of whispering gallery modes excited in a closed cavity

    图  2  半径为r, 腔体的开口大小为θ的亥姆霍兹腔的几何结构图, 入射角为$ {\theta }_{i} $, 腔的开口中心线与x轴重合

    Fig.  2  Geometry of an EM Helmholtz cavity with radius r and angular width of the opening θ, θi is the angle of incidence and the center line of the opening is the x axis

    图  3  半径r = 60 mm, 开口大小为$\theta = 14^\circ $的亥姆霍兹腔, 在入射角${\theta _i} = {0^\circ }$时,前5个Mie散射系数的绝对量$|{B_m}|$与入射波长的关系

    Fig.  3  The absolute value of the first five Mie scattering coefficients, $|{B_m}|$, as a function of wavelength for a Helmholtz cavity with r = 60 mm and $\theta = 14^\circ $, the angle of incidence is ${\theta _i} = {0^\circ }$

    图  4  半径$r = 60$ mm, 开口角宽度不同的亥姆霍兹腔, 在入射角${\theta _i} = {0^\circ}$时, a) Mie散射系数的绝对值$|{B_1}|$和b) $|{B_3}|$随波长的变化; c) 偶极回音壁模式和d) 六极回音壁模式的Q值随腔的开口角宽度的变化

    Fig.  4  The absolute value of the Mie scattering coefficients a) and b) versus incident wavelength for Helmholtz cavities with the same radius r = 60 mm but different angular widths of the opening; The quality factor, Q, of the dipole WGM c) and the hexapole WGM d) versus incident wavelength for Helmholtz cavities with the same radius r = 60 mm but different angular widths of the opening. The angle of incidence is ${\theta _i} = {0^\circ}$

    图  5  半径$r = 60$ mm, 开口角宽度$\theta = {20^\circ}$的亥姆霍兹腔, 在波长a) $\lambda = 53.8\;{\rm{mm}}$和b) $\lambda = 59.2\;{\rm{mm}}$的波的入射下的电场分布图; c)、e)分别为半径$r = 60$ mm, 开口角宽度$\theta = {8^\circ}$的亥姆霍兹腔, 在入射波长$\lambda = 53.8\;{\rm{mm}}$的波的入射下的电场分布图和磁场矢量分布图; d)和f )分别为半径$r = 60$ mm, 开口角宽度$\theta = {10^\circ}$的亥姆霍兹腔, 在入射波长$\lambda = 59.2{\rm{mm}}$的波的入射下的电场分布图和磁场矢量分布图. 入射角均为${\theta _i} = 0^\circ $

    Fig.  5  The E field distribution when an EM wave with a) $\lambda = 53.8\;{\rm{mm}}$ and b) $\lambda = 59.2\;{\rm{mm}}$ strikes a Helmholtz cavity with radius r = 60 mm and angle width of the opening $\theta = {20^\circ}$; c) The E field distribution and e) the magnetic field vector distribution when an EM wave with $\lambda = 53.8\;{\rm{mm}}$ strikes a Helmholtz cavity with radius r = 60 mm and angle width of the opening $\theta = {8^\circ}$; d) The E field distribution f) and the magnetic field vector distribution when an EM wave with $\lambda = 59.2\;{\rm{mm}}$ strikes a Helmholtz cavity with radius r = 60 mm and angle width of the opening $\theta = 10^\circ $. The angle of incidence is ${\theta _i} = {0^\circ}$

    图  6  a)半径$r = 60$ mm, 开口角宽度$\theta = {8^\circ}$的亥姆霍兹腔, 在不同入射角下, Mie散射系数的绝对量$|{B_1}|$随波长的变化关系; b)半径$r = 60$ mm, 开口角宽度$\theta = {10^\circ}$的亥姆霍兹腔, 在不同入射角下, Mie散射系数的绝对量$|{B_3}|$随波长的变化关系; 半径$r = 60$ mm, 开口角宽度$\theta = {10^\circ}$的亥姆霍兹腔, 在入射波长$\lambda = 59.2\;{\rm{mm}}$、入射角分别为c) 15°和d) 25°时, 电场的分布图

    Fig.  6  a) The absolute value of the Mie scattering coefficients, $|{B_1}|$, versus incident wavelength for Helmholtz cavities with radius r = 60 mm and angular width of the opening $\theta = {8^\circ}$ at different incident angle; b) The absolute value of the Mie scattering coefficients, $|{B_3}|$, versus incident wavelength for Helmholtz cavities with radius r = 60 mm and angular width of the opening $\theta = {10^\circ}$ at different incident angle; The E field distribution when an EM wave with $\lambda = 59.2\;{\rm{mm}}$ strikes a Helmholtz cavity with radius r = 60 mm and angle width of the opening $\theta = 10^\circ $ at an angle of incidence c) ${\theta _i} = {15^\circ}$ and d) ${\theta _i} = {25^\circ}$

    图  7  a) 半径$r = 60$ mm, 壁厚$t = 0.2$ mm, 开口角宽度$\theta = {\rm{8}}^\circ $的亥姆霍兹腔, 在入射波长$\lambda = 53.8\;{\rm{mm}}$时的电场分布图; b) 开口角宽度变为$\theta = 10^\circ $, 在入射波长$\lambda = 5{\rm{9}}.{\rm{2\;mm}}$时的电场分布图. 入射角均为${\theta _i} = 0^\circ $

    Fig.  7  a) The E field distribution for the Helmholtz cavity with radius r = 60 mm, wall thickness $t = 0.2$ mm and angular width of the opening $\theta = {\rm{8}}^\circ $ at $\lambda = 53.8\;{\rm{mm}}$; b) The E field distribution for the Helmholtz cavity with radius r = 60 mm, wall thickness $t = 0.2$ mm and angular width of the opening $\theta = 10^\circ $ at $\lambda = 59.2\;{\rm{mm}}$. The angle of incidence is ${\theta _i} = {0^\circ}$

    图  8  当入射波为横电极化波时, 半径$r = 60$ mm: a) 开口角宽度$\theta = {\rm{8}}^\circ $的亥姆霍兹腔, 在入射波长$\lambda = 53.{\rm{5\;mm}}$时的磁场分布图; b) 开口角宽度变为$\theta = 10^\circ $, 在入射波长$\lambda = 5{\rm{8}}.{\rm{8\;mm}}$时的磁场分布图. 入射角均为${\theta _i} = 0^\circ $

    Fig.  8  The H field distribution for the Helmholtz cavity with radius r = 60 mm and angular width of the opening $\theta = {\rm{8}}^\circ $ for the transverse-magnetic polarized wave with $\lambda = 53.5\;{\rm{mm}}$; b) The H field distribution for the Helmholtz cavity with radius r = 60 mm and angular width of the opening $\theta = 10^\circ $ at $\lambda = 58.8\;{\rm{mm}}$. The angle of incidence is ${\theta _i} = {0^\circ}$

  • [1] LORD RAYLEIGH O M F R S. The problem of the whispering gallery [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1910, 20(120): 1001-1004.
    [2] MIE G. Beiträge zur optik trüber medien, speziell kolloidaler metallösungen [J]. Annalen der Physik, 1908, 330(3): 377-445.
    [3] RICHTMYER R D. Dielectric resonators [J]. Journal of Applied Physics, 1939, 10(6): 391-398.
    [4] GARRETT C G B, KAISER W, BOND W L. Stimulated emission into optical whispering modes of spheres [J]. Physical Review, 1961, 124(6): 1807-1809.
    [5] WALSH P, KEMENY G. Laser operation without spikes in a ruby ring [J]. Journal of Applied Physics, 1963, 34(4): 956-957.
    [6] MCCALL S L, LEVI A F J, SLUSHER R E, et al. Whispering-gallery mode microdisk lasers [J]. Applied Physics Letters, 1992, 60(3): 289-291.
    [7] SLUSHER R E, LEVI A F J, MOHIDEEN U, et al. Threshold characteristics of semiconductor microdisk lasers [J]. Applied Physics Letters, 1993, 63(10): 1310-1312.
    [8] LEVI A F J, SLUSHER R E, MCCALL S L, et al. Directional light coupling from microdisk lasers [J]. Applied Physics Letters, 1993, 62(6): 561-563.
    [9] XIA F N, SEKARIC L, VLASOV Y. Ultracompact optical buffers on a silicon chip [J]. Nature Photonics, 2007(1): 65-71.
    [10] YANIK M F, FAN S H. Stopping light all optically [J]. Physical Review Letters, 2004, 92(8): 083901.
    [11] DONG C H, HE L, XIAO Y F, et al. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing [J]. Applied Physics Letters, 2009, 94(23): 839-842.
    [12] VOLLMER F, ARNOLD S. Whispering-gallery-mode biosensing: Label-free detection down to single molecules [J]. Nature Methods, 2008, 5(7): 591-596.
    [13] VOLLMER F, BRAUN D, LIBCHABER A, et al. Protein detection by optical shift of a resonant microcavity [J]. Applied Physics Letters, 2002, 80(21): 4057-4059.
    [14] KIPPENBERG T J, ROKHSARI H, CARMON T, et al. Analysis of radiation-pressure induced mechanical oscillation of an optical microcavity [J]. Physical Review Letters, 2005, 95(3): 033901.
    [15] MA R, SCHLIESSER A, DEL’HAYE P, et al. Radiation-pressure-driven vibrational modes in ultra-high-Q silica microspheres [J]. Optics Letters, 2007, 32(15): 2200-2202.
    [16] KIPPENBERG T J, VAHALA K J. Cavity optomechanics: Back-action at the mesoscale [J]. Science, 2008, 321(5893): 1172-1176.
    [17] SCHLIESSER A, KIPPENBERG T J. Cavity optomechanics with whispering-gallery-mode optical micro-resonators [J]. Advances in Atomic, Molecular, and Optical Physics, 2010, 58: 207-323.
    [18] BRAGINSKY V B, GORODETSKY M L, ILCHENKO V S. Quality-factor and nonlinear properties of optical whispering-gallery modes [J]. Physics Letters A, 1989, 137(7/8): 393-397.
    [19] HONDA K, GARMIRE E, WILSON K. Characteristics of an integrated optics ring resonator fabricated in glass [J]. Journal of Lightwave Technology, 1984, 2(5): 714-719.
    [20] ARMANI D K, KIPPENBERG T J, SPILLANE S M, et al. Ultra-high-Q toroid microcavity on a chip [J]. Nature, 2003, 421(6926): 925-928.
    [21] MOON H J, CHOUGH Y T, AN K. Cylindrical microcavity laser based on the evanescent-wave-coupled gain [J]. Physical Review Letters, 2000, 85(15): 3161-3164.
    [22] COLLOT L, LEFÈVRE-SEGUIN V, BRUNE M, et al. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres [J]. Europhysics Letters, 2007, 23(5): 327-334.
    [23] ILCHENKO V S, SAVCHENKOV A A, MATSKO A B, et al. Nonlinear optics and crystalline whispering gallery mode cavities [J]. Physical Review Letters, 2004, 92(4): 043903.
    [24] SAVCHENKOV A A, ILCHENKO V S, MATSKO A B, et al. Kilohertz optical resonances in dielectric crystal cavities [J]. Physical Review A, 2004, 70(5): 051804.
    [25] LI B B, WANG Q Y, YUN F X, et al. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator [J]. Applied Physics Letteres, 2010, 96(25): 251109.
    [26] ZENINARI V, KAPITANOV V A, COURTOIS D, et al. Design and characteristics of a differential Helmholtz resonant photoacoustic cell for infrared gas detection [J]. Infrared Physics and Technology, 1999, 40(1): 1-23.
    [27] FANG N, XI D J, XU J Y, et al. Ultrasonic metamaterials with negative modulus [J]. Nature Materials, 2006, 5(6): 452-456.
    [28] LEE S H, PARK C M, SEO Y M, et al. Composite acoustic medium with simultaneously negative density and modulus [J]. Physical Review Letters, 2010, 104(5): 054301.
    [29] SENIOR T B A. Electromagnetic field penetration into a cylindrical cavity [J]. IEEE Transactions on Electromagnetic Compatibility, 1976, EMC-18(2): 71-73.
    [30] BONBARDT J N JR , LIBELO L F. The Scattering of electromagnetic radiation by apertures’ Ⅴ. Surface current, tangential aperture electric field, and back-scattering cross-section for the axially slotted cylinder at normal, symmetric incidence[R]. NASA STI/Recon Technical Report N, 1975.
    [31] NEGANOV V A, SARYCHEV A A. Diffraction of a plane electromagnetic wave by a circulardielectric cylinder with a finite-length perfectly conducting metal strip on the cylinder's lateral surface [J]. Journal of Communications Technology and Electronics, 2008, 53(11): 1315-1322.
    [32] ZIOLKOWSKI R W, GRANT J B. Scattering from cavity-backed apertures: The generalized dual series solution of the concentrically loadedE-pol slit cylinder problem [J]. IEEE Transactions on Antennas and Propagation, 1987, 35(5): 504-528.
    [33] JOHNSON W A, ZIOLKOWSKI R W. The scattering of an H-polarized plane wave from an axially slotted infinite cylinder: A dual series approach [J]. Radio Science, 1984, 19(1): 275-291.
  • 加载中
图(8)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  55
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-31
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回