中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

核物质的低能有效场论研究

潘廷纬 杨继锋

潘廷纬, 杨继锋. 核物质的低能有效场论研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 82-91. doi: 10.3969/j.issn.1000-5641.202022007
引用本文: 潘廷纬, 杨继锋. 核物质的低能有效场论研究[J]. 华东师范大学学报(自然科学版), 2021, (1): 82-91. doi: 10.3969/j.issn.1000-5641.202022007
PAN Tingwei, YANG Jifeng. Low-energy effective field theory study of nuclear matter[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 82-91. doi: 10.3969/j.issn.1000-5641.202022007
Citation: PAN Tingwei, YANG Jifeng. Low-energy effective field theory study of nuclear matter[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 82-91. doi: 10.3969/j.issn.1000-5641.202022007

核物质的低能有效场论研究

doi: 10.3969/j.issn.1000-5641.202022007
基金项目: 国家自然科学基金(11435005)
详细信息
    通讯作者:

    杨继锋, 男, 副教授, 硕士生导师, 研究方向为场论与粒子物理、基础物理. E-mail: jfyang@phy.ecnu.edu.cn

  • 中图分类号: O412.3

Low-energy effective field theory study of nuclear matter

  • 摘要: 采用低能有效场论分析了核物质和零温费米系统; 通过严格求解1S0分波Bethe-Goldstone方程(Bethe-Goldstone Equation, BGE), 得到了闭合形式的Brückner G矩阵, 并完成了其非微扰重整化. 在对理论参数的值进行选取之后, 完全了在Brückner G矩阵框架下, 分析包括密度背景中的配对问题以及费米系统单粒子能量在内的物理性质. 此外还将本文的框架和结果与其他文献进行了比较.
  • 图  1  相移曲线

    Fig.  1  Phase shift curves

    图  2  ${\varLambda _{{J_0}}}$ = 138 MeV, x = 0.2时, 极点位置kppF的关系

    Fig.  2  Relationship between the poles kp and pF, with ${\varLambda _{{J_0}}}$ = 138 MeV, x = 0.2

    图  3  ${\varLambda _{{J_0}}}$ = 35 MeV, x = 0.2时, 极点位置kppF的关系

    Fig.  3  Relationship between the poles kp and pF, with ${\varLambda _{{J_0}}}$ = 35 MeV, x = 0.2

    图  4  ${\varLambda _{{J_0}}}$ = 138 MeV, x = 0.2, pF = 0.3 fm–1时的G-k

    Fig.  4  Graph of G-k with ${\varLambda _{{J_0}}}$ = 138 MeV, x = 0.2, pF = 0.3 fm–1

    图  8  ${\varLambda _{{J_0}}}$ = 35 MeV, x = 0.2, pF = 0.5 fm–1时的G-k

    Fig.  8  Graph of G-k with ${\varLambda _{{J_0}}}$ = 35 MeV, x = 0.2, pF = 0.5 fm–1

    图  5  ${\varLambda _{{J_0}}}$ = 35 MeV, x = 0.2, pF = 0.3 fm–1时的G-k

    Fig.  5  Graph of G-k with ${\Lambda _{{J_0}}}$ = 35 MeV, x = 0.2, pF = 0.3 fm–1

    图  6  ${\varLambda _{{J_0}}}$ = 138 MeV, x = 0.2, pF = 0.5 fm–1时的G-k

    Fig.  6  Graph of G-k with ${\varLambda _{{J_0}}}$ = 138 MeV, x = 0.2, pF = 0.5 fm–1

    图  7  图6的局部放大

    Fig.  7  A partial enlargement of figure 6

    表  1  ${\varLambda _{{J_0}}}$ = 138 MeV, Brückner G矩阵的一些极点位置kp

    Tab.  1  Some poles kp of Brückner G matrix with ${\varLambda _{{J_0}}}$ = 138 MeV

    pF/fm–1kp/fm–1
    x = +0.20x = –0.20x = +0.05x = –0.05
    0.02 0.019993 0.095892 0.287473 0.599659
    0.10 0.019993 0.095883 0.287139 0.599531
    0.30 0.019993 0.095889 0.287364 0.599622
    0.60 0.019993 0.095887 0.287282 0.599591
    下载: 导出CSV

    表  2  ${\varLambda _{{J_0}}}$ = 35 MeV, Brückner G矩阵的一些极点位置kp

    Tab.  2  Some poles kp of Brückner G matrix with ${\varLambda _{{J_0}}}$ = 35 MeV

    pF/fm–1kp/fm–1
    x = +0.20x = –0.20x = +0.05x = –0.05
    0.02 0.019993 0.095848 0.292220
    0.10 0.019993 0.095815 0.290605
    0.30 0.019993 0.095837 0.291721
    0.60 0.019993 0.095829 0.291325
    下载: 导出CSV

    表  3  ${\varLambda _{{J_0}}}$ = 138 MeV, 单粒子能量, (E/A)1表示(1)方法的数值结果, (E/A)2表示(2)方法的结果

    Tab.  3  Single particle energy with ${\varLambda _{{J_0}}}$ = 138 MeV, (E/A)1 represents the numerical result of method (1), (E/A)2 represents the result of method (2)

    pF/fm–1(E/A)1/MeV (E/A)2/MeV
    x = +0.20x = –0.20x = +0.05x = –0.05
    0.02 0.004272 0.07010 0.47441 1.39254 0.004334
    0.10 0.004272 0.07005 0.46638 1.33538 0.082810
    0.30 0.004272 0.07009 0.47179 1.37403 0.610010
    0.50 0.004272 0.07007 0.46980 1.35990 1.584170
    下载: 导出CSV

    表  4  ${\varLambda _{{J_0}}}$ = 35 MeV, 单粒子能量, (E/A)1表示(1)方法的数值结果, (E/A)2表示(2)方法的结果

    Tab.  4  Single particle energy with ${\varLambda _{{J_0}}}$ = 35 MeV, (E/A)1 represents the numerical result of method (1), (E/A)2 represents the result of method (2)

    pF/fm–1(E/A)1/MeV (E/A)2/MeV
    x = +0.20x = –0.20x = +0.05x = –0.05
    0.02 0.004272 0.06959 0.42301 1.21512 0.004334
    0.10 0.004272 0.06940 0.38721 0.95924 0.082810
    0.30 0.004272 0.06953 0.41158 1.13564 0.610010
    0.50 0.004272 0.06948 0.40276 1.07292 1.584170
    注: 取${\varLambda _{ {J_0} } }$ = 35 MeV时, 一部分pF取值的Brückner G 矩阵没有极点, 所以灰色部分是一般积分所得的结果
    下载: 导出CSV
  • [1] CHADWICK J. Possible existence of a neutron [J]. Nature, 1932, 129(3252): 312-312.
    [2] 黄建华. 核子-核子散射与非微扰重整化 [D]. 上海: 华东师范大学, 2004.
    [3] WEINBERG S. Phenomenological Lagrangians [J]. Physica A, 1979, 96(1/2): 327-340.
    [4] WEINBERG S. Nuclear forces from chiral Lagrangians [J]. Physics Letters B, 1990, 251(2): 288-292.
    [5] 王盼盼. 核子-核子低能散射的有效场论研究 [D]. 上海: 华东师范大学, 2013.
    [6] KAPLAN D B, SAVAGE M J, WISE M B. A new expansion for nucleon-nucleon interactions [J]. Physics Letters B, 1998, 424(3): 390-396.
    [7] EPELBAUM E, GLÖCKLE W, MEIßNER U. Nuclear forces from chiral Lagrangians using the method of unitary transformation Ⅱ: The two-nucleon system [J]. Nuclear Physics A, 2000, 671(1): 295-331.
    [8] ENTEM D R, MACHLEIDT R. Chiral 2π exchange at fourth order and peripheral NN scattering [J]. Physical Review C, 2002, 66(1): 014002.
    [9] HAMMER H W, FURNSTAHL R J. Effective field theory for dilute Fermi systems [J]. Nuclear Physics A, 2000, 678(3): 277-294.
    [10] STEELE J V. Effective field theory power counting at finite density [EB/OL]. (2000-11-15)[2019-06-05]. https://arxiv.org/pdf/nucl-th/0010066.pdf.
    [11] KRIPPA B. Effective field theory at moderate nuclear density [EB/OL]. (2000-06-27)[2019-06-25]. https://arxiv.org/pdf/hep-ph/0006305.pdf.
    [12] YANG J F, HUANG J H. Renormalization of NN scattering: Contact potential [J]. Physical Review C, 2005, 71(3): 034001.
    [13] YANG J F. A note on nonperturbative renormalization of effective field theory [J]. Journal of Physics A, 2009, 42(34): 345402.
    [14] YANG J F. Nonperturbative NN scattering in 3S1–3D1 channels of EFT( \scriptsize $ \not \pi $ \normalsize ) [J]. Annals of Physics, 2013, 339: 160-180.
    [15] YANG J F. A nonperturbative parametrization and scenario for EFT renormalization [J]. Europhysics Letters, 2009, 85(5): 51003.
    [16] YANG J F. Effective range expansion in various scenarios of EFT( \scriptsize $ \not \pi $ \normalsize ) [J]. Europhysics Letters, 2011, 94(4): 41002.
    [17] PHILLIPS D R, BEANE S R, COHEN T D. Nonperturbative regularization and renormalization: Simple examples from nonrelativistic quantum mechanics [J]. Annals of Physics, 1998, 263(2): 255-275.
    [18] LÜ J J, YANG J F. ‘Running’ with tight constraints in pionless EFT[EB/OL]. (2019-08-03)[2019-11-9]. https://arxiv.org/pdf/1806.03048.pdf.
    [19] STOKS V G J, KLOMP R A M, RENTMEESTER M C M, et al. Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV [J]. Physical Review C, 1993, 48(2): 792-815.
    [20] ALM T, FRIMAN B L, RÖPKE G, et al. Pairing instability in hot asymmetric nuclear matter [J]. Nuclear Physics A, 1993, 551(1): 45-53.
    [21] THOULESS D J. Stability conditions and nuclear rotations in the Hartree-Fock theory [J]. Nuclear Physics, 1960, 21: 225-232.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  56
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-01
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回