中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用超高斯光模拟方势垒

李佳欣 董光炯

李佳欣, 董光炯. 利用超高斯光模拟方势垒[J]. 华东师范大学学报(自然科学版), 2021, (1): 129-136. doi: 10.3969/j.issn.1000-5641.202022008
引用本文: 李佳欣, 董光炯. 利用超高斯光模拟方势垒[J]. 华东师范大学学报(自然科学版), 2021, (1): 129-136. doi: 10.3969/j.issn.1000-5641.202022008
LI Jiaxin, DONG Guangjiong. Theoretical simulations of the square potential barrier with a super-Gaussian beam[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 129-136. doi: 10.3969/j.issn.1000-5641.202022008
Citation: LI Jiaxin, DONG Guangjiong. Theoretical simulations of the square potential barrier with a super-Gaussian beam[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 129-136. doi: 10.3969/j.issn.1000-5641.202022008

利用超高斯光模拟方势垒

doi: 10.3969/j.issn.1000-5641.202022008
基金项目: 国家自然科学基金(11574085, 91536218, 11834003); 上海市教委科研创新计划(2019-01-07-00-05-E00079)
详细信息
    通讯作者:

    董光炯, 男, 教授, 博士生导师, 研究方向为量子光学. E-mail: gjdong@phy.ecnu.edu.cn

  • 中图分类号: O436.2

Theoretical simulations of the square potential barrier with a super-Gaussian beam

  • 摘要: 方势垒是一个研究量子力学中隧穿问题的理想模型. 提出了利用具有大蓝失谐的超高斯光和原子相互作用的偶极势能和超高斯光和电子的有质动力势能模拟方势垒. 通过比较超高斯势垒对入射平面波散射的数值解和方势垒对物质波散射的解析解, 发现当超高斯光场阶数大于20时能够有效地模拟方势垒对物质波的散射问题. 进一步研究了物质波入射到双超高斯势垒的共振隧穿现象. 研究结果为在实验上使用超高斯光束模拟方势垒量子隧穿现象提供了理论基础.
  • 图  1  超高斯势垒示意图

    Fig.  1  Diagram of a super-Gaussian barrier

    图  2  一维超高斯势垒散射模型示意图

    Fig.  2  Schematic diagram of a one-dimensional super-Gaussian barrier scattering model

    图  3  透射系数随入射能量的变化

    Fig.  3  Transmission coefficient as a function of incident energy

    图  4  $ {\rm{lg}}\left(\overline {\Delta {T_m}}\right) $随阶数$ m $的变化

    Fig.  4  $ {\rm{lg}}\left(\overline {\Delta {T_m}}\right) $ as a function of the order m

    图  5  双超高斯势垒散射模型示意图

    Fig.  5  Schematic model for double super-Gaussian barrier scattering

    图  6  透射率随入射能量的变化

    Fig.  6  Transmittance as a function of incident energy

  • [1] HUND F. On the interpretation of molecular spectra [J]. Zeitschrift für Physik, 1927, 43: 805-811.
    [2] NORDHEIM L. Zur theorie der thermischen emission und der reflexion von elektronen an metallen [J]. Zeitschrift für Physik, 1928, 46: 833-855.
    [3] OPPENHEIMER J R. Three notes on the quantum theory of aperiodic effects [J]. Physical Review, 1928, 31: 66-81.
    [4] GAMOW G. Zur quantentheorie des atomkernes [J]. Zeitschrift für Physik, 1928, 51(3/4): 204-212.
    [5] GURNEY R W, CONDON E U. Wave mechanics and radioactive disintegration [J]. Nature, 1928, 122(3073): 439-439.
    [6] GURNEY R W, CONDON E U. Quantum mechanics and radioactive disintegration [J]. Physical Review, 1929, 33(2): 127-140.
    [7] MILLIKAN R A, EYRING C F. Laws governing the pulling of electrons out of metals by intense electrical fields [J]. Physical Review, 1926, 27(1): 51-67.
    [8] BÜTTIKER M, IMRY Y, LANDAUER R, et al. Generalized many-channel conductance formula with application to small rings [J]. Physical Review B, 1985, 31(10): 6207-6215.
    [9] BARDEEN J. Tunnelling from a many-particle point of view [J]. Physical Review Letters, 1961, 6(2): 57-59.
    [10] ESAKI L. New phenomenon in narrow germanium P-N junctions [J]. Physical Review, 1958, 109(2): 603-604.
    [11] BINNIG G, ROHRER H, GERBER C, et al. Surface studies by scanning tunneling microscopy [J]. Physical Review Letters, 1982, 49(1): 57-61.
    [12] TERSOFF J, HAMANN D R. Theory and application for the scanning tunneling microscope [J]. Physical Review Letters, 1983, 50(25): 1998-2001.
    [13] 曾谨言. 量子力学(卷1) [M]. 2版. 北京: 北京大学出版社, 1998: 63-68.
    [14] OLKHOVSKY V S, RECAMI E. Developments in the time analysis of tunneling processes [J]. Physics Reports, 1992, 214(6): 339-357.
    [15] OLKHOVSKY V S, RECAMI E, JAKIEL J. Unified time analysis of photon and particle tunnelling [J]. Physics Reports, 2004, 398(3): 133-178.
    [16] SHAFIR D, SOIFER H, BRUNER B D, et al. Resolving the time when an electron exits a tunnelling barrier [J]. Nature, 2012, 485(7398): 343-346.
    [17] LANDSMAN A S, KELLER U. Attosecond science and the tunnelling time problem [J]. Physics Reports, 2015, 547(5): 1-24.
    [18] KWIAT P, STEINBERG A, CHIAO R. Measurement of the single-photon tunneling time [J]. Physical Review Letters, 1993, 71(5): 708-711.
    [19] LANDAUER R, MARTIN T. Barrier interaction time in tunneling [J]. Reviews of Modern Physics, 1994, 66(1): 217-228.
    [20] SPIELMANN C, SZIPÖCS R, STINGL A, et al. Tunneling of optical pulses through photonic band gaps [J]. Physical Review Letters, 1994, 73(17): 2309-2311.
    [21] TSU R, ESAKI L. Tunneling in a finite superlattice [J]. Applied Physics Letters, 1973, 22(11): 562-565.
    [22] CHANG L L, ESAKI L, TSU R. Resonant tunneling in semiconductor double barriers [J]. Applied Physics Letters, 1974, 24(12): 593-595.
    [23] SHEALY D L, HOFFNAGLE J A. Beam shaping profiles and propagation [C]// Proceedings SPIE 5876, Laser Beam Shaping VI. 2005: 58760D. DOI: 10.1117/12.619305.
    [24] DICKEY F M, WEICHMAN L S, SHAGAM R N. Laser beam shaping techniques [C]// Proceedings of the SPIE, Volume 4065 : High-Power Laser Ablation III. SPIE, 2000: 338-348.
    [25] CHEN H X, SUI Z, CHEN Z P, et al. Laser beam shaping using liquid crystal spatial light modulator [J]. Acta Optica Sinica, 2001, 21(9): 1107-1111.
    [26] LIU J S, CHENG Q Y, YUE D G, et al. Dynamical analysis of the effect of super-Gaussian laser pulses on molecular orientation [J]. Laser Physics, 2018, 28(12): 1-7.
    [27] SCHIFFER M, RAUNER M, KUPPENS S, et al. Guiding, focusing and cooling of atoms in a strong dipole potential [J]. Applied Physics B, 1998, 67(6): 705-708.
    [28] KUPPENS S, RAUNER M, SCHIFFER M, et al. Polarization-gradient cooling in a strong doughnut-mode dipole potential [J]. Physical Review A, 1998, 58(4): 3068-3079.
    [29] SILVESTRI S D, LAPORTA P, MAGNI V, et al. Unstable laser resonators with super-Gaussian mirrors [J]. Optics Letters, 1988, 13(3): 201-203.
    [30] LIU J S, TAGHIZADEH M R. Iterative algorithm for the design of diffractive phase elements for laser beam shaping [J]. Optics Letters, 2002, 27(16): 1463-1465.
    [31] LIU J S, CALEY A J, TAGHIZADEH M R. Symmetrical iterative Fourier-transform algorithm using both phase and amplitude freedoms [J]. Optics Communications, 2006, 267(2): 347-355.
    [32] LIU J S, THOMSON M J, TAGHIZADEH M R. Automatic symmetrical iterative Fourier-transform algorithm for the design of diffractive optical elements for highly precise laser beam shaping [J]. Journal of Modern Optics, 2006, 53(4): 461-471.
    [33] ZHAO Y, LI Y P, ZHOU Q G. Vector iterative algorithm for the design of diffractive optical elements applied to uniform illumination [J]. Optics Letters, 2004, 29(7): 664-666.
    [34] 林勇, 胡家升, 吴克难. 一种用于光束整形的衍射光学元件设计算法 [J]. 光学学报, 2007, 27(9): 1682-1686.
    [35] BÉLANGER P A, LACHANCE R L, PARÉ C. Super-Gaussian output from a CO2 laser by using a graded-phase mirror resonator [J]. Optics Letters, 1992, 17(10): 739-741.
    [36] DONG G J, EDVADSSON S, LU W, et al. Super-Gaussian mirror for high-field-seeking molecules [J]. Physical Review A, 2005, 72(3): 031605.
    [37] DUAN Z, FAN B, YUAN C H, et al. Quantum tunneling time of a Bose-Einstein condensate traversing through a laser-induced potential barrier [J]. Physical Review A, 2010, 81(5): 055602.
    [38] ZHOU L, ZHENG R F, ZHANG W. Spin-sensitive atom mirror via spin-orbit interaction [J]. Physical Review A, 2016, 94(5): 053630.
    [39] HARTEMANN F V, VAN METER J R, TROHA A L, et al. Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus [J]. Physical Review E, 1998, 58(4): 5001-5012.
    [40] STUPAKOV G V, ZOLOTOREV M S. Ponderomotive laser acceleration and focusing in vacuum for generation of attosecond electron bunches [J]. Physical Review Letters, 2001, 86(23): 5274-5277.
    [41] FRIEDRICH B, HERSCHBACH D. Alignment and trapping of molecules in intense laser fields [J]. Physical Review Letters, 1995, 74(23): 4623-4626.
    [42] 刘盛纲. 自由电子激光的空间电荷波理论 [J]. 强激光与粒子束, 1990(2): 131-147.
    [43] 张永德. 量子力学 [M]. 2版. 北京: 科学出版社, 2008: 55-59.
    [44] MATHEWS J H, FINK K K. Numerical methods using matlab: International edition [M]. [S.l]: Prentice-Hall Inc, 2004: 339.
    [45] LAI H M, CHAN S W. Large and negative Goos–Hänchen shift near the Brewster dip on reflection from weakly absorbing media [J]. Optics Letters, 2002, 27(9): 680-682.
    [46] SHEN N H, CHEN J, WU Q Y, et al. Large lateral shift near pseudo-Brewster angle on reflection from a weakly absorbing double negative medium [J]. Optics Express, 2006, 14(22): 10574-10579.
    [47] KAMIŃSKI P, DROŻDŻ S, PLOSZAJCZAK M, et al. Even-odd anomalous tunneling effect [J]. Physical Review C, 1993, 47(4): 1548-1552.
  • 加载中
图(6)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  62
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回