中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场调制WS2单层分子薄膜光致发光行为

费萌 谢微

费萌, 谢微. 电场调制WS2单层分子薄膜光致发光行为[J]. 华东师范大学学报(自然科学版), 2021, (1): 137-143. doi: 10.3969/j.issn.1000-5641.202022010
引用本文: 费萌, 谢微. 电场调制WS2单层分子薄膜光致发光行为[J]. 华东师范大学学报(自然科学版), 2021, (1): 137-143. doi: 10.3969/j.issn.1000-5641.202022010
FEI Meng, XIE Wei. Electric field modulated photoluminescence from WS2 monolayers[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 137-143. doi: 10.3969/j.issn.1000-5641.202022010
Citation: FEI Meng, XIE Wei. Electric field modulated photoluminescence from WS2 monolayers[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 137-143. doi: 10.3969/j.issn.1000-5641.202022010

电场调制WS2单层分子薄膜光致发光行为

doi: 10.3969/j.issn.1000-5641.202022010
基金项目: 国家自然科学基金(11674097)
详细信息
    通讯作者:

    谢 微, 男, 研究员, 博士生导师, 研究方向为固态环境中光-物质相互作用及其调控. E-mail: wxie@phy.ecnu.edu.cn

  • 中图分类号: O472.3

Electric field modulated photoluminescence from WS2 monolayers

  • 摘要: 二维材料已经在多个领域得到应用, 其中过渡金属硫化物(Transition metal dichalcogenides, TMDCs)因存在带隙而有望用于光电领域. 将机械剥离法制备的WS2单层分子薄膜通过干法转移至两种微周期电极结构上, 实验发现其光致发光信号受到外加偏压的调制. 研究了常温和低温环境下外加偏压对WS2薄膜荧光光谱信号的影响, 分析讨论了不同荧光峰强度和峰位的变化行为和物理机理. 基于外加偏压,实现对WS2单层分子薄膜光学性能的调制, 有望在场效应晶体管、光电探测器、柔性电子器件以及异质结器件等诸多光电领域实现应用.
  • 图  1  a) WS2单层薄膜与30 μm电极组装的实验装置在光学显微镜下的照片, 白色虚线框区为WS2单分子层;b) 实验装置测量区域横截面示意图; 有限元算法软件Comsol模拟的电场分布图,分别是c) 30 μm和d) 10 μm的一对电极贴单层前和贴单层后的横截面电场分布及局部放大图

    Fig.  1  a) Photograph of the device assembled with a WS2 monolayer and a 30 μm electrode, the white dotted frame indicates the WS2 monolayer; b) Schematic cross-sectional view of the measurement area of the device, the electric field distributions are simulated using Comsol Multiphysics software; Pictured here are cross-sectional electric field distributions and partial magnified views of a pair of c) 30 μm and d) 10 μm electrodes before and after attaching a monolayer

    图  2  室温下a) A处单层荧光信号随偏压变化光谱图; b) A处峰位随偏压变化散点图; c) B处单层荧光信号随偏压变化光谱图; d) B处峰位随偏压变化散点图. 箭头指示了偏压由–30 V到30 V的变化方向

    Fig.  2  a) PL of monolayer at A with bias; b) Scatter plot of peak position at A with bias; c) PL of monolayer at B with bias; and d) Scatter plot of peak position at B with bias. The arrow indicates the direction of the bias change from –30 V to 30 V

    图  3  a) WS2单层薄膜与10 μm电极组装的实验装置在光学显微镜下的照片, 白色虚线框区为WS2单分子层;b) 激子峰荧光峰值强度随偏压的变化, ①处有降低趋势(蓝色条柱),②处有增强趋势(红色条柱), ③处无单一变化趋势(紫色条柱)

    Fig.  3  a) Photograph of the device assembled with a WS2 monolayer and a 10 μm electrode; the white dotted frame indicates the WS2 monolayer; b) The exciton peak intensity varies with the bias; ① has a decreasing trend (blue bar), ② has an increasing trend (red bar), and ③ has a no single change trend (purple bar)

    图  4  温度10 K下: a) C处单层荧光信号随偏压变化光谱图; b) C处峰位随偏压变化散点图; c) D处单层荧光信号随偏压变化光谱图; d) D处峰位随偏压变化散点图. 箭头指示了偏压由–30 V到30 V变化方向

    Fig.  4  At a temperature of 10 K: a) PL of monolayer at C with bias; b) Scatter plot of peak position at C with bias; c) PL of monolayer at D with bias; and d) Scatter plot of peak position at D with bias. The arrow indicates the direction of the bias change from –30 V to 30 V

  • [1] DAS S, KIM M, LEE J, et al. Synthesis, properties, and applications of 2-D materials: A comprehensive review [J]. Critical Reviews in Soild State and Materials Sciences, 2014, 39(4): 231-252. DOI:  10.1080/10408436.2013.836075.
    [2] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics [J]. Nature Photonics, 2012, 6(11): 749-758. DOI:  10.1038/nphoton.2012.262.
    [3] CASTRO E V, NOVOSELOV K S, MOROZOV S V, et al. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J]. Physical Review Letters, 2007, 99(21): 6802-6806. DOI:  10.1103/PhysRevLett.99.216802.
    [4] MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 6805-6809. DOI:  10.1103/PhysRevLett.105.136805.
    [5] ZHANG Q, LU J, WANG Z, et al. Reliable synthesis of large-area monolayer WS2 single crystals, films, and heterostructures with extraordinary photoluminescence induced by water intercalation [J]. Advanced Opyical Materials, 2018, 6(12): 1701347-1701356. DOI:  10.1002/adom.201701347.
    [6] CONG C, SHANG J, WU X, et al. Synthesis and optical properties of large-area single-crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition [J]. Advanced Opyical Materials, 2014, 2(2): 131-136. DOI:  10.1002/adom.201300428.
    [7] KORMANYOS A, ZOLYOMI V, DRUMMOND N D, et al. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides [J]. Physical Review X, 2014, 4(1): 011034-011050. DOI:  10.1103/PhysRevX.4.011034.
    [8] ROY S, BERMEL P. Electronic and optical properties of ultra-thin 2D tungsten disulfide for photovoltaic applications [J]. Solar Energy Materials and Solar Cells, 2018, 174(C): 370-379. DOI:  10.1016/j.solmat.2017.09.011.
    [9] WANG L, WANG W, WANG Q, et al. Study on photoelectric characteristics of monolayer WS2 films [J]. RSC Advances, 2019, 9(64): 37195-37200. DOI:  10.1039/c9ra07924f.
    [10] HUANG X, ZENG Z, ZHANG H. Metal dichalcogenide nanosheets: preparation, properties and applications [J]. Chemical Society Reviews, 2013, 42(5): 1934-1946. DOI:  10.1039/c2cs35387c.
    [11] ZHAO C, NORDEN T, ZHANG P, et al. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field [J]. Nature Nanotechnology, 2017, 12(8): 757. DOI:  10.1038/nnano.2017.68.
    [12] LIU Y, HUANG W, CHEN W, et al. Plasmon resonance enhanced WS2 photodetector with ultra-high sensitivity and stability [J]. Applied Surface Science, 2019, 481: 1127-1132. DOI:  10.1016/j.apsusc.2019.03.179.
    [13] LIN T W, SADHASIVAM T, WANG A Y, et al. Ternary composite nanosheets with MoS2/WS2/graphene heterostructures as high-performance cathode materials for supercapacitors [J]. ChemElectroChem, 2018, 5(7): 1024-1031. DOI:  10.1002/celc.201800043.
    [14] TANG B, YU Z G, HUANG L, et al. Direct n- to p-Type channel conversion in monolayer/few-layer WS2 field-effect transistors by atomic nitrogen treatment [J]. ACS Nano, 2018, 12(3): 2506-2513. DOI:  10.1021/acsnano.7b08261.
    [15] YUE Y, CHEN J, ZHANG Y, et al. Two-dimensional high-quality monolayered triangular WS2 flakes for field-effect transistors [J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22435-22444. DOI:  10.1021/acsami.8b05885.
    [16] ZHAO H, GUO Q, XIA F, et al. Two-dimensional materials for nanophotonics application [J]. Nanophotonics, 2015, 4(2SI): 128-142. DOI:  10.1515/nanoph-2014-0022.
    [17] COLEMAN J N, LOTYA M, O’NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials [J]. Science, 2011, 331(6017): 568-571. DOI:  10.1126/science.1194975.
    [18] LIU J, LO T W, SUN J, et al. A comprehensive comparison study of CVD-grown and mechanically exfoliated fewlayered WS2: The vibrational and optical properties [J]. Journal of Materials Chemistry C, 2017, 5(43): 1123911245. DOI:  10.1039/c7tc02831h.
    [19] HE Z Y, SHENG Y W, RONG Y M, et al. Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields [J]. ACS Nano, 2015, 9(3): 2740-2748. DOI:  10.1021/nn506594a.
    [20] LI X, WANG Y, FRY J N, et al. Tunneling field-effect junctions with WS2 barrier [J]. Journal of Physics and Chemistry of Solids, 2019, 128: 343-350. DOI:  10.1016/j.jpcs.2017.12.005.
    [21] SHANG J Z, SHEN X N, CONG C X, et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor [J]. ACS Nano, 2015, 9(1): 647-655. DOI:  10.1021/nn5059908.
    [22] PLECHINGER G, NAGLER P, KRAUS J, et al. Identification of excitons, trions and biexcitons in single-layer WS2 [J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2015, 9(8): 457-461. DOI:  10.1002/pssr.201510224.
    [23] MAK K F, HE K L, LEE C G, et al. Tightly bound trions in monolayer MoS2 [J]. Nature Materials, 2013, 12(3): 207-211. DOI:  10.1038/NMAT3505.
  • 加载中
图(4)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  139
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-11
  • 刊出日期:  2021-01-27

目录

    /

    返回文章
    返回