中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于粒级分离的长江口及邻近陆架沉积物磁性特征及其环境意义

葛灿 张卫国

葛灿, 张卫国. 基于粒级分离的长江口及邻近陆架沉积物磁性特征及其环境意义[J]. 华东师范大学学报(自然科学版), 2021, (2): 30-41. doi: 10.3969/j.issn.1000-5641.2021.02.004
引用本文: 葛灿, 张卫国. 基于粒级分离的长江口及邻近陆架沉积物磁性特征及其环境意义[J]. 华东师范大学学报(自然科学版), 2021, (2): 30-41. doi: 10.3969/j.issn.1000-5641.2021.02.004
GE Can, ZHANG Weiguo. Magnetic properties of particle-sized fractions of sediments in the Changjiang Estuary and neighboring shelf, and its environmental implications[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 30-41. doi: 10.3969/j.issn.1000-5641.2021.02.004
Citation: GE Can, ZHANG Weiguo. Magnetic properties of particle-sized fractions of sediments in the Changjiang Estuary and neighboring shelf, and its environmental implications[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 30-41. doi: 10.3969/j.issn.1000-5641.2021.02.004

基于粒级分离的长江口及邻近陆架沉积物磁性特征及其环境意义

doi: 10.3969/j.issn.1000-5641.2021.02.004
基金项目: 国家自然科学基金(41576094); 科技部重点研发计划(2017YFE0107400); 上海市科委重点项目(18DZ1206401); 中国博士后科学基金(2019M652147); 浙江省自然科学基金(LQ19D060001)
详细信息
    作者简介:

    葛灿:葛 灿, 男, 博士, 研究方向为河口动力沉积与环境演变. E-mail: cansklec2014@126.com

    通讯作者:

    张卫国, 男, 研究员, 研究方向为三角洲环境演变. E-mail: wgzhang@sklec.ecnu.edu.cn

  • 中图分类号: P736.21+2

Magnetic properties of particle-sized fractions of sediments in the Changjiang Estuary and neighboring shelf, and its environmental implications

  • 摘要: 在粒级分离的基础上, 对长江河口及邻近陆架22个表层沉积物进行了磁学表征, 探讨了磁性特征对物源、输运、沉积动力等环境信息的指示意义. 研究结果表明, 长江入海泥沙、残留砂及废黄河物质是长江口外水下三角洲及邻近陆架沉积物磁性特征的主要物源影响因素, 但3者的空间分布不同. 沉积物磁化率(χ)、饱和等温剩磁(SIRM)、硬剩磁(HIRM)及非磁滞剩磁磁化率(χARM)的空间变化指示了长江入海泥沙出口门后向南及东南方向输运. SIRM与χ及退磁参数(S–100)与SIRM关系图表明, 大于63 μm粒级沉积物来自残留砂与现代长江粗颗粒, 其分布大致以30 m等深线为界; 小于 16 μm粒级沉积物受长江和废黄河物质的影响, 口内为长江源, 口外北部贴岸以废黄河源为主, 口外其他区域则表现为以长江物质占主导的混合源. 沉积物粒度和磁学特征的空间变化反映了动力的粒度和密度分选作用, 并体现在沉积环境分区磁性特征差异及分粒级组分对全样SIRM贡献的空间变化上. 粒级分离减小了粒度效应对全样磁性特征的干扰, 提高了沉积物物源判别的准确性, 在反映三角洲地貌变化及物源定量识别上具有重要意义.
  • 图  1  研究区域及样品位置

    注: 根据粒度及全样磁学特征, 样品分为A、B、C、D 4组, 分别位于口内河槽、三角洲前缘、过渡区和陆架4个沉积区[31]; 星形表示分粒级样品, TT′为长江口至陆架的一个分析断面.

    Fig.  1  Map of the study area showing the respective sampling sites

    图  2  沉积物粒级组成的空间变化

    注: 柱状图上方的数字为百分含量.

    Fig.  2  Spatial variations in sediment particle size compositions

    图  3  沉积物全样及4个粒级组分的磁性特征

    Fig.  3  Magnetic properties of bulk samples and the four particle size fractions

    图  4  沉积物各粒级组分对全样SIRM贡献的空间分布

    Fig.  4  Spatial variation of the contribution of the four particle size fractions to the bulk SIRM value

    图  5  沉积物全样和分粒级组分SIRM与χ关系

    Fig.  5  SIRM versus χ plot for bulk sediments and the four particle size fractions

    图  6  沉积物全样和分粒级组分S-100与SIRM关系

    注: 长江、黄河全样和分粒级数据分别来自Zhang等[7]和Wang等[34].

    Fig.  6  S-100 versus SIRM plots for bulk sediments and the four particle size fractions

    图  7  长江口及邻近陆架典型断面TT′沉积物小于16 μm粒级组分磁学参数变化

    Fig.  7  Magnetic properties of the < 16 μm sediment fractions along transect TT′ from the Changjiang Estuary to the East China Sea shelf

    图  8  长江口外2016年(蓝色, 本研究)与2006—2007年(红色, Liu等[27])采集表层沉积物饱和等温剩磁(SIRM)与中值粒径(Md)的比较

    Fig.  8  A comparison of SIRM and median size (Md) of sediments from the shelf off the Changjiang Estuary collected in 2016 (blue, this study) and 2006—2007 (red, Liu et al.[27])

    表  1  沉积物粒级组成、SIRM值及其对全样SIRM值的贡献比例

    Tab.  1  Particle size compositions, SIRM of particle size fractions, and their respective contributions to bulk SIRM

    分区
    样品
    各粒级百分含量/%SIRM/ (×10–6Am2·kg–1)对全样SIRM贡献/%
    < 16 μm16 ~
    32 μm
    32 ~
    63 μm
    > 63 μm < 16 μm16 ~
    32 μm
    32 ~
    63 μm
    > 63 μm全样 < 16 μm16 ~
    32 μm
    32 ~
    63 μm
    > 63 μm
    A S1 1 3 14 82 6398 7566 12715 2714 4369 1.6 5.9 40.7 51.8
    S2 19 32 8 41 7750 6411 8790 4055 5994 25.5 34.4 12 28.2
    S6 6 3 9 82 12829 14552 28929 6578 9711 7.9 4.8 28.7 58.5
    S7 1 1 1 97 10888 9729 30083 6692 6884 1.4 0.9 3.4 94.4
    S9 0 1 4 95 11541 63166 36218 4350 6559 0.8 7.4 25.1 66.7
    B S3 29 36 8 27 6691 6030 8030 4978 5809 32.1 36.1 9.6 22.2
    S4 23 41 10 26 9817 7179 6936 7543 7814 28.8 37.2 8.7 25.3
    S5 29 35 17 19 6531 5894 5800 6469 5948 30.8 33.7 15.7 19.8
    S8 51 11 4 34 6412 7799 16194 14555 7622 33.4 8.9 6.4 51.3
    S10 50 36 9 5 9033 5827 6803 10949 7872 57.7 26.9 8.1 7.3
    S17 83 12 3 2 5829 3862 3085 4212 5415 88.2 8.5 1.9 1.4
    S20 74 15 9 2 6068 3335 2342 3047 5147 85.6 8.8 4.2 1.4
    C S11 53 7 4 36 3844 2397 4829 4394 3635 51.6 4.5 4.3 39.6
    S12 8 2 1 89 4808 4601 5932 4400 4263 8.4 2.3 1.5 87.7
    S14 57 17 7 19 3947 3636 3673 2600 3594 62.2 17.2 6.8 13.8
    S15 0 0 0 100 0 0 0 4462 4100 0 0 0 100
    S18 34 6 6 54 5302 4653 7374 3025 3851 42.7 6.5 11.3 39.5
    S21 25 5 5 65 5548 6375 8710 3332 4101 31.8 7.5 9.3 51.4
    S13 54 10 3 33 4761 4001 4804 5219 4440 53.3 8.3 3.1 35.3
    S16 13 4 3 80 4141 3618 5530 3763 3554 14.4 3.8 4.1 77.6
    D S19 9 3 2 86 4021 3202 6322 2800 2756 12.3 3.2 4.7 79.8
    S22 15 7 9 69 3921 3192 3129 1510 1977 27.0 10.6 13.7 48.8
    下载: 导出CSV
  • [1] 陈吉余, 沈焕庭, 恽才兴, 等. 长江河口动力过程和地貌演变 [M]. 上海: 上海科学技术出版社, 1988: 48-62.
    [2] 李从先, 汪品先. 长江晚第四纪河口地层学研究 [M]. 北京: 科学出版社, 1998: 114-172.
    [3] LIU J, XU K, LI A, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea [J]. Geomorphology, 2007, 85(3/4): 208-224.
    [4] WANG J, BASKARAN M, HOU X, et al. Historical changes in 239Pu and 240Pu sources in sedimentary records in the East China Sea: Implications for provenance and transportation [J]. Earth and Planetary Science Letters, 2017, 466: 32-42.
    [5] BAO R, BLATTMANN T, MCLNTYRE C, et al. Relationships between grain size and organic carbon 14C heterogeneity in continental margin sediments [J]. Earth and Planetary Science Letters, 2019, 505: 76-85.
    [6] ZHU M, CHEN K, YANG G, et al. Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical mobile mud belts (MMBs) [J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(11): 2811-2828.
    [7] ZHANG W, XING Y, YU L, et al. Distinguishing sediments from the Yangtze and Yellow Rivers, China: A mineral magnetic approach [J]. The Holocene, 2008, 18(7): 1139-1145.
    [8] ZHANG W, MA H, YE L, et al. Magnetic and geochemical evidence of Yellow and Yangtze River influence on tidal flat deposits in northern Jiangsu Plain, China [J]. Marine Geology, 2012, 319-322: 47-56.
    [9] ZHANG W, YU L. Magnetic properties of tidal flat sediments of the Yangtze Estuary and its relationship with particle size [J]. Science in China Series D: Earth Sciences, 2003, 46(9): 954-966.
    [10] DONG C, ZHANG W, HE Q, et al. Magnetic fingerprinting of hydrodynamic variations and channel erosion across the turbidity maximum zone of the Yangtze Estuary, China [J]. Geomorphology, 2014, 226: 300-311.
    [11] 孟庆勇, 李安春. 海洋沉积物的环境磁学研究简述 [J]. 海洋环境科学, 2008, 27(1): 86-90.
    [12] 潘大东, 王张华, 陈艇, 等. 长江口表层沉积物矿物磁性分区特征及其沉积环境指示意义 [J]. 海洋学报, 2015, 37(5): 101-111.
    [13] 张凯棣, 李安春, 卢健, 等. 东海陆架沉积物环境磁学特征及其物源指示意义 [J]. 海洋与湖沼, 2017, 48(2): 246-257.
    [14] WANG Y, DONG H, LI G, et al. Magnetic properties of muddy sediments on the northeastern continental shelves of China: Implication for provenance and transportation [J]. Marine Geology, 2010, 274: 107-119.
    [15] 张卫国, 贾铁飞, 陆敏, 等. 长江口水下三角洲Y7柱样磁性特征及其影响因素 [J]. 第四纪研究, 2007, 27(6): 1063-1071.
    [16] 胡忠行, 张卫国, 董辰寅, 等. 东海内陆架沉积物磁性特征对早期成岩作用的响应 [J]. 第四纪研究, 2012, 32(4): 670-678.
    [17] 马鸿磊, 张卫国, 胡忠行, 等. 长江口外CX21柱样的磁性特征及其影响因素 [J]. 华东师范大学学报(自然科学版), 2012(3): 120-129.
    [18] GE C, ZHANG W, DONG C, et al. Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea, China [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(7): 4720-4733.
    [19] OLDFIELD F, YU L. The influence of particle size variations on the magnetic properties of sediments from the north-eastern Irish Sea [J]. Sedimentology, 1994, 41(6): 1093-1108.
    [20] HORNG C, ROBERTS A. Authigenic or detrital origin of pyrrhotite in sediments?: Resolving a paleomagnetic conundrum [J]. Earth and Planetary Science Letters, 2006, 241(3): 750-762.
    [21] FRANKE C, KISSEL C, ROBIN E, et al. Magnetic particle characterization in the Seine river system: Implications for the determination of natural versus anthropogenic input [J]. Geochemistry, Geophysics, Geosystems, 2009, 10: Q08Z05.
    [22] HORNG C, HUH C. Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait [J]. Earth and Planetary Science Letters, 2011, 39(1/2): 141-152.
    [23] 强萧萧, 韩宗珠, 王永红, 等. 中国东部海域表层沉积物磁化率空间分布特征 [J]. 中国海洋大学学报, 2018, 48(4): 94-103.
    [24] LIU Q, BANERJEE S, JACKSON M, et al. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B9): 2437.
    [25] HATFIELD R, MAHER B. Fingerprinting upland sediment sources: Particle size-specific magnetic linkages between soils, lake sediments and suspended sediments [J]. Earth Surface Processes and Landforms, 2009, 34(10): 1359-1373.
    [26] HATFIELD R, STONER J, REILLY B, et al. Grain size dependent magnetic discrimination of Iceland and South Greenland terrestrial sediments in the northern North Atlantic sediment record [J]. Earth and Planetary Science Letters, 2017, 474: 474-489.
    [27] LIU S, ZHANG W, HE Q, et al. Magnetic properties of East China Sea shelf sediments off the Yangtze Estuary: Influence of provenance and particle size [J]. Geomorphology, 2010, 119(3/4): 212-220.
    [28] LI P, LI P, ZHANG X, et al. Magnetic properties of different grain-sized particles of sediments from the Okinawa Trough and their relationships to sedimentary environment [J]. Chinese Science Bulletin, 2005, 50(7): 696-703.
    [29] ZAN J, FANG X, YAN M, et al. Comparison of hysteresis, thermomagnetic and low-temperature magnetic properties of particle-size fractions from loess and palaeosol samples in Central Asia and the Chinese Loess Plateau [J]. Geophysical Journal International, 2018, 214(3): 1608-1622.
    [30] HAO Q, OLDFIELD F, BLOEMENDAL J, et al. Particle size separation and evidence for pedogenesis in samples from the Chinese Loess Plateau spanning the past 22 m.y [J]. Geology, 2008, 36(9): 727-730.
    [31] 葛灿. 长江口—东海内陆架沉积物磁性特征及其指示意义 [D]. 上海: 华东师范大学, 2017.
    [32] BLOEMENDAL J, KING J, HALL F, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology [J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361-4375.
    [33] THOMPSON R, OLDFIELD F. Environmental Magnetism [M]. London: Allen & Unwin, 1986.
    [34] WANG F, ZHANG W, NIAN X, et al. Magnetic evidence for Yellow River sediment in the late Holocene deposit of the Yangtze River Delta, China [J]. Marine Geology, 2020, 427: 106274.
    [35] JIA J, GAO J, CAI T, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century [J]. Marine Geology, 2018, 401: 2-16.
    [36] NGUYEN, T, ZHANG, W, LI Z, et al. Magnetic properties of sediments of the Red River: Effect of sorting on the source-to-sink pathway and its implications for environmental reconstruction [J]. Geochemistry, Geophysics, Geosystems, 2016, 17: 270-281.
    [37] DEMASTER, J, MCKEE, A, NITTROUER, C, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea [J]. Continental Shelf Research, 1985, 4(1): 143-158.
    [38] 黎兵, 严学新, 何中发, 等. 长江口水下地形演变对三峡水库蓄水的响应 [J]. 科学通报, 2015, 60(18): 1736-1745.
    [39] CHENG Q, WANG F, CHEN J, et al. Combined chronological and mineral magnetic approaches to reveal age variations and stratigraphic heterogeneity in the Yangtze River subaqueous delta [J]. Geomorphology, 2020, 359: 107163.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  64
  • HTML全文浏览量:  83
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-17
  • 刊出日期:  2021-03-30

目录

    /

    返回文章
    返回