中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海辰山植物园木本植物幼枝导管特征及其权衡关系

李媛媛 商侃侃 张希金 宋坤

李媛媛, 商侃侃, 张希金, 宋坤. 上海辰山植物园木本植物幼枝导管特征及其权衡关系[J]. 华东师范大学学报(自然科学版), 2021, (2): 142-150. doi: 10.3969/j.issn.1000-5641.2021.02.014
引用本文: 李媛媛, 商侃侃, 张希金, 宋坤. 上海辰山植物园木本植物幼枝导管特征及其权衡关系[J]. 华东师范大学学报(自然科学版), 2021, (2): 142-150. doi: 10.3969/j.issn.1000-5641.2021.02.014
LI Yuanyuan, SHANG Kankan, ZHANG Xijin, SONG Kun. Vessel characteristics and the density-size relationship of woody plantsat the Shanghai Chenshan Botanical Garden[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 142-150. doi: 10.3969/j.issn.1000-5641.2021.02.014
Citation: LI Yuanyuan, SHANG Kankan, ZHANG Xijin, SONG Kun. Vessel characteristics and the density-size relationship of woody plantsat the Shanghai Chenshan Botanical Garden[J]. Journal of East China Normal University (Natural Sciences), 2021, (2): 142-150. doi: 10.3969/j.issn.1000-5641.2021.02.014

上海辰山植物园木本植物幼枝导管特征及其权衡关系

doi: 10.3969/j.issn.1000-5641.2021.02.014
基金项目: 国家自然科学基金(31500355, 31600343); 上海市科技创新行动计划(18DZ1204602, 18DZ1204704); 上海市绿化和市容管理局项目(G182420)
详细信息
    通讯作者:

    宋 坤, 男, 副教授, 硕士生导师, 研究方向为生态学. E-mail: ksong@des.ecnu.edu.cn

  • 中图分类号: Q948

Vessel characteristics and the density-size relationship of woody plantsat the Shanghai Chenshan Botanical Garden

  • 摘要: 以上海市辰山植物园85种常见木本植物为研究对象, 通过解剖木质部结构, 分析了枝条导管特征在不同生活型物种间的差异及其系统发育信号, 揭示了导管密度-大小权衡关系在不同生活型物种间的差异. 结果表明: ①常绿木本植物的导管直径((28.55 ± 8.84) μm)和导管占比(8.7% ± 2.89%)均显著小于落叶木本植物导管直径((35.81 ± 13.92) μm)和导管占比(12.7% ± 4.82%), 而导管密度在常绿((149.3 ± 75.62) N/mm2)和落叶((164.5 ± 154.28) N/mm2)木本植物之间则无显著差异; 乔木的导管直径((35.86 ± 13.5) μm)显著大于灌木((26.24 ± 8.84) μm), 导管占比和密度在乔木(12.09% ± 5.01%, (151.9 ± 142.73) N/mm2)和灌木(10.59% ± 2.99%, (208.7 ± 126.37) N/mm2)之间则无显著差异. ②导管直径、导管密度存在显著的系统发育信号, 且导管密度信号大于导管直径, 导管占比则无明显的谱系信号存在. ③标准化主轴估计分析表明, 导管密度-大小权衡关系普遍存在, 不同生活型植物具有相同的斜率系数(k = –0.89, 95%的置信区间CI 为 –0.98 ~ –0.79), 但常绿乔木的纵截距显著小于落叶乔木, 即相同导管密度下落叶乔木比常绿乔木具有更大的导管直径.
  • 图  1  植物枝条木质部解剖图

    注: 未被染色且分布具有一定规律的白色空腔即为导管.

    Fig.  1  Anatomical section of the xylem of twigs

    图  2  常绿植物与落叶植物导管性状比较

    注: 字母不同表示有显著差异, 字母相同表示无显著差异.

    Fig.  2  Comparison of vessel characteristics between evergreen and deciduous plants

    图  3  乔木与灌木导管性状比较

    注: 字母不同表示有显著差异, 字母相同表示无显著差异.

    Fig.  3  Comparison of vessel characteristics between trees and shrubs

    图  4  导管密度-大小权衡关系

    Fig.  4  Relationship between vessel density and vessel size

    图  5  不同生活型导管密度-大小关系的标准化主轴估计结果

    Fig.  5  Relationship between vessel density and vessel size among different life forms based on SMA analysis

    表  1  导管性状指标

    Tab.  1  Characteristics of vessels

    功能性状指标缩写性状解释单位
    导管直径DV导管的平均直径 μm
    导管占比RV导管占观察区域总面积的比例%
    导管密度ρ单位面积导管数N/mm2
    下载: 导出CSV

    表  2  3个导管性状系统发育信号的检测结果

    Tab.  2  The phylogenetic signal of three vessel characteristics

    功能性状性状平均值K p
    导管直径(DV)34.3 μm0.320.012
    导管占比(RV)11.8%0.090.538
    导管密度(ρ)161.3 N/mm20.580.001
    下载: 导出CSV
  • [1] GLEASON S M, WESTOBY M, JANSEN S, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world's woody plant species [J]. New Phytologist, 2016, 209: 123-136.
    [2] MANZONI S, VICO G, KATUL G, et al. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off [J]. New Phytologist, 2013, 198: 169-178.
    [3] HACKE U G, SPERRY J S, WHEELER J K, et al. Scaling of angiosperm xylem structure with safety and efficiency [J]. Tree Physiology, 2006, 26(6): 689-701.
    [4] PFAUTSCH S, HARBUSCH M, WESOLOWSKI A, et al. Climate determines vascular traits in the ecologically diverse genus Eucalyptus [J]. Ecology Letters, 2016, 19(3): 240-248.
    [5] DIXON H H. Transpiration and the Ascent of Sap [M]. London: Macmillan Publishers Limited, 1914.
    [6] RYAN M G, YODER B J. Hydraulic limits to tree height and tree growth–what keeps trees from growing beyond a certain height? [J]. BioScience, 1997, 47(4): 235-242.
    [7] TYREE M T, COCHARD H, DAVIS S D. Biophysical perspectives of xylem evolution: Is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? [J]. Iawa Journal, 1994, 15(4): 335-360.
    [8] SPERRY J S, MEINZER F C, MCCULLOH K A. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees [J]. Plant Cell & Environment, 2008, 31(5): 632-645.
    [9] 徐茜, 陈亚宁. 胡杨茎木质部解剖结构与水力特性对干旱胁迫处理的响应 [J]. 中国生态农业学报, 2012, 20(8): 1059-1065.
    [10] 周朝彬, 辛慧慧, 宋于洋. 梭梭次生木质部解剖特征及其可塑性研究 [J]. 西北林学院学报, 2014, 29(2): 207-212.
    [11] 楚光明, 刘娜, 牛攀新, 等. 准噶尔盆地三种荒漠植物木质部导管解剖特征 [J]. 干旱区资源与环境, 2016, 30(2): 104-109.
    [12] LECHTHALER S, TYRNBULL T L, GELMINI Y, et al. A standardization method to disentangle environmental information from axial trends of xylem anatomical traits [J]. Tree Physiology, 2018, 39(3): 495-502.
    [13] WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies: Some leading dimensions of variation between species [J]. Annual Review of Ecology and Systematics, 2002, 33: 125-159.
    [14] MURAMATSU N, YAMAMOTO M, NAKANO H, et al. Analysis of factors governing water flow traits in fruiting plants twigs [J]. Scientia Horticulturae, 2011, 130(1): 175-180.
    [15] 曹科, 饶米德, 余建中, 等. 古田山木本植物功能性状的系统发育信号及其对群落结构的影响 [J]. 生物多样性, 2013, 21(5): 564-571.
    [16] 房帅, 原作强, 蔺菲, 等. 长白山阔叶红松林木本植物系统发育与功能性状结构 [J]. 科学通报, 2014, 59(24): 2342-2348.
    [17] 侯嫚嫚, 李晓宇, 王均伟, 等. 长白山针阔混交林不同演替阶段群落系统发育和功能性状结构 [J]. 生态学报, 2017, 37(22): 7503-7513.
    [18] 许格希, 林明献, 史作民, 等. 尖峰岭热带山地雨林林冠层乔木某些功能性状的系统发育信号、关联性及其演化模式 [J]. 生态学报, 2017, 37(17): 5691-5703.
    [19] LITTLE S A, KEMBEL S W, WILF P, et al. Paleotemperature proxies from leaf fossils reinterpreted in light of evolutionary history [J]. Plos One, 2010, 5(12): e15161.
    [20] THOMAS R, BOURA A. Palm stem anatomy: Phylogenetic or climatic signal? [J]. Botanical Journal of the Linnean Society, 2015, 178(3): 467-488.
    [21] CABRERA HIM, ESTRADA-RUIZ E. Influence of phylogenetic relatedness on paleoclimate estimation using fossil wood: Vessel and fiber-related traits [J]. Review of Palaeobotany & Palynology, 2018, 251: 73-77.
    [22] 伍海兵, 方海兰, 彭红玲. 典型新建绿地上海辰山植物园土壤水库特征及其影响因子 [J]. 应用生态学报, 2016, 27(5): 1437-1444.
    [23] 伍海兵, 方海兰, 彭红玲, 等. 典型新建绿地上海辰山植物园的土壤物理性质分析 [J]. 水土保持学报, 2012, 26(6): 85-90.
    [24] 张希金, 宋坤, 蒲发光, 等. 安徽大别山木本植物幼树小枝薄壁组织组成特征初探 [J]. 植物生态学报, 2019, 43(3): 238-244.
    [25] PLAVCOVÁ L, HOCH G, MORRIS H, et al. The amount of parenchyma and living fibers affects storage of nonstructural carbohydrates in young stems and roots of temperate trees [J]. American Journal of Botany, 2016, 103(4): 603-612.
    [26] WEBB C O, DONOGHUE M J. Phylomatic: Tree assembly for applied phylogenetics [J]. Molecular Ecology Notes, 2005, 5(1): 181-183.
    [27] BLOMBERG S P, GARLAND T, IVES A R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile [J]. Evolution, 2003, 57(4): 717-745.
    [28] WARTON D I, WEBER N C. Common slope tests for bivariate errors-in-variables models [J]. Biometrical Journal, 2002, 44(2): 161-174.
    [29] WARTON D I, WRIGHT I J, FALSTER D S, et al. Bivariate line-fitting methods for allometry [J]. Biological Reviews, 2006, 81(2): 259-291.
    [30] WEBB C O, ACKERLY D D, KEMBEL S W. Phylocom: Software for the analysis of phylogenetic community structure trait evolution [J]. Bioinformatics, 2008, 24(18): 2098-2100.
    [31] PARADIS E, CLAUDE J, STRIMMER K. APE: Analyses of phylogenetics and evolution in R language [J]. Bioinformatics, 2004, 20(2): 289-290.
    [32] TYREE M T, GRAHAM M E D, COOPER K E, et al. The hydraulic architecture of Thuja occidentalis [J]. Canadian Journal of Botany, 1983, 61(61): 2105-2111.
    [33] TYREE M T, SNYDERMAN D A, WILMOT T R, et al. Water relations and hydraulic architecture of a tropical tree (Schefflera morototoni): Data, models, and a comparison with two temperate species (Acer saccharum and Thuja occidentalis) [J]. Plant Physiology, 1991, 96(4): 1105-1113.
    [34] DRAKE P L, PRICE C A, POOT P, et al. Isometric partitioning of hydraulic conductance between leaves and stems: Balancing safety and efficiency in different growth forms and habitats [J]. Plant, Cell & Environment, 2015, 38(8): 1628-1636.
    [35] 赵延涛. 浙江天童常绿阔叶林不同生长型木本植物的水分和温度代谢特征 [D]. 上海: 华东师范大学, 2016.
    [36] GAGLIARDI S, MARTIN A R, FILHO EDMV, et al. Intraspecific leaf economic trait variation partially explains coffee performance across agroforestry management regimes [J]. Agriculture Ecosystems & Environment, 2015, 200: 151-160.
    [37] WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum [J]. Nature, 2004, 428(6985): 821-827.
    [38] 苏田. 中国东部岛屿木本植物导管变异及其与叶片-木质性状耦合 [D]. 上海: 华东师范大学, 2019.
    [39] TYREE M T, ZIMMERMANN M H. Xylem structure and the ascent of sap [J]. Science, 2002, 222(4623): 500-501.
    [40] DAVIS S D, SPERRY J S, HACKE U G. The relationship between xylem conduit diameter and cavitation caused by freezing [J]. American Journal of Botany, 1999, 86(10): 1367-1372.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  186
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-28
  • 刊出日期:  2021-03-30

目录

    /

    返回文章
    返回