中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江口余水位时空变化的数值模拟和分析

宋云平 朱建荣

宋云平, 朱建荣. 长江口余水位时空变化的数值模拟和分析[J]. 华东师范大学学报(自然科学版), 2021, (4): 121-133. doi: 10.3969/j.issn.1000-5641.2021.04.014
引用本文: 宋云平, 朱建荣. 长江口余水位时空变化的数值模拟和分析[J]. 华东师范大学学报(自然科学版), 2021, (4): 121-133. doi: 10.3969/j.issn.1000-5641.2021.04.014
SONG Yunping, ZHU Jianrong. Numerical simulation and analysis of the spatial and temporal variations in residual water levels of the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2021, (4): 121-133. doi: 10.3969/j.issn.1000-5641.2021.04.014
Citation: SONG Yunping, ZHU Jianrong. Numerical simulation and analysis of the spatial and temporal variations in residual water levels of the Changjiang Estuary[J]. Journal of East China Normal University (Natural Sciences), 2021, (4): 121-133. doi: 10.3969/j.issn.1000-5641.2021.04.014

长江口余水位时空变化的数值模拟和分析

doi: 10.3969/j.issn.1000-5641.2021.04.014
基金项目: 国家自然科学基金(41676083)
详细信息
    通讯作者:

    朱建荣, 男, 教授, 博士生导师, 研究方向为河口海洋学. E-mail: jrzhu@sklec.ecnu.edu.cn

  • 中图分类号: P731.2

Numerical simulation and analysis of the spatial and temporal variations in residual water levels of the Changjiang Estuary

  • 摘要: 应用严格验证过的河口海岸三维数值模型, 模拟了长江口余水位的时空变化, 分析径流、潮汐和风应力对余水位的影响, 揭示了余水位变化的动力机制. 长江河口余水位的空间分布和随时间变化过程主要是受径流影响, 其次是受风的影响. 余水位上游大于下游. 全年最高余水位出现在9月, 徐六泾、崇西、南门、堡镇和深水航道北导堤东端分别为0.861 m、0.754 m、0.629 m、0.554 m和0.298 m. 最低余水位徐六泾和崇西出现在1月, 分别为0.420 m和0.391 m; 南门和堡镇出现在2月, 分别为0.313 m和0.291 m; 深水航道北导堤东端出现在4月, 量值为0.111 m. 北支余水位低于南支, 原因在于进入北支的径流量少. 南港的余水位大于北港, 同一河道内南侧的余水位大于北侧, 原因在于径流受科氏力作用右偏. 对比仅有径流、潮汐和风的数值试验结果, 对余水位作用最大的是径流, 其次是潮汐, 最小的是风. 月平均径流量7月达到最大, 会导致最高余水位, 但期间为东南风, 产生的余水位十分微小. 9月盛行的北风产生向陆的Ekman水体输运, 会引起河口余水位上升, 且期间径流量仍处于高值区, 两者相互作用, 导致整个河口全年最高余水位出现在9月.
  • 图  1  长江口及其邻近海域形势图

    注: 图中圆点表示浮标, 三角形表示水文站, 正方形表示崇明东滩气象站.

    Fig.  1  Map of the Changjiang Estuary and the adjacent sea

    图  2  模型计算区域及网格(a), 放大的南北支分汊口附近网格(b)和深水航道工程附近网格(c)

    Fig.  2  Domain and grid of the model (a), enlarged grid near the bifurcation between the North and South Branches (b), and enlarged grid near the Deepwater Navigation Channel project (c)

    图  3  大通站多年平均径流量和崇明东滩半月平均风矢

    Fig.  3  Monthly mean river discharge at Datong station and semi-monthly mean wind vector at Chongming eastern shoal

    图  4  崇西站(a)、南门站(b)和堡镇站(c) 2018年3月1日0时至19日0时水位随时间变化情况

    注: 黑线为模型计算值, 红点为实测值.

    Fig.  4  Temporal variation in water levels at Chongxi (a), Nanmen (b), and Baozhen (c) hydrological stations from 0:00 on March 1 to 0:00 March 19, 2018

    图  5  2018年3月9日12时至19日6时浮标站A表层流速、流向和盐度随时间变化情况

    注: 黑线为模型计算值, 红点为实测值.

    Fig.  5  Temporal variations in surface current velocity, speed, and salinity at buoy station A from 12:00 on March 9 to 6:00 on March 19, 2018

    图  6  2018年3月9日12时至19日6时浮标站B表层流速、流向和盐度随时间变化情况

    注: 黑线为模型计算值, 红点为实测值.

    Fig.  6  Temporal variations in surface current velocity, speed, and salinity at buoy station B from 12:00 on March 9 to 6:00 on March 19, 2018

    图  7  2月(a)、5月(b)、8月(c)和11月(d)月平均余水位分布

    Fig.  7  Distribution of monthly mean residual water levels in February (a), May (b), August (c), and November (d)

    图  8  崇西、南门和堡镇水文站及徐六泾、深水航道北导堤东端模式输出点余水位随时间变化

    注: 红线表示徐六泾, 黑粗实线表示崇西站, 黑粗虚线表示南门站, 黑细虚线表示堡镇站, 蓝线表示深水航道北导堤东端.

    Fig.  8  Temporal variations in residual water levels at Chongxi, Nanmen, and Baozhen hydrological stations as well as the Xuliujing model output site and the easternmost section of the northern dike of the Deepwater Navigation Channel

    图  9  仅考虑径流情况下长江口2月(a)、5月(b)、8月(c)和11月(d)月平均余水位分布

    Fig.  9  Distribution of monthly mean residual water levels in the Changjiang Estuary in February (a), May (b), August (c), and November (d) in the case of runoff only

    图  10  仅考虑径流情况下崇西、南门和堡镇水文站及徐六泾、深水航道北导堤东端模式输出点余水位随时间变化

    注: 红线为徐六泾, 黑粗实线为崇西站, 黑粗虚线为南门站, 黑细虚线为堡镇站, 蓝线为深水航道北导堤东端.

    Fig.  10  Temporal variation in residual water levels at hydrological stations Chongxi, Nanmen, and Baozhen as well as the Xuliujing model output site and the easternmost section of the northern dike of the Deepwater Navigation Channel in the case of runoff only

    图  11  仅考虑潮汐情况下长江口2月(a)、5月(b)、8月(c)和11月(d)月平均余水位分布

    Fig.  11  Distribution of monthly mean residual water levels in the Changjiang Estuary in February (a), May (b), August (c), and November (d) in the case of tide only

    图  12  仅考虑潮汐情况下崇西、南门和堡镇水文站及徐六泾、深水航道北导堤东端模式输出点余水位随时间变化

    注: 红线表示徐六泾, 黑粗实线表示崇西站, 黑粗虚线表示南门站, 黑细虚线表示堡镇站, 蓝线表示深水航道北导堤东端.

    Fig.  12  Temporal variations in residual water levels at Chongxi, Nanmen, and Baozhen hydrological stations as well as the Xuliujing model output site and the easternmost section of the northern dike of the Deepwater Navigation Channel in the case of tide only

    图  13  仅考虑风的情况下长江口2月(a)、5月(b)、8月(c)和11月(d)月平均余水位分布

    Fig.  13  Distribution of monthly mean residual water levels in the Changjiang Estuary in February (a), May (b), August (c), and November (d) in the case of wind only

    图  14  仅考虑风情况下崇西、南门和堡镇水文站及徐六泾、深水航道北导堤东端模式输出点余水位随时间变化

    注: 红线表示徐六泾, 黑粗实线表示崇西站, 黑粗虚线表示南门站, 黑细虚线表示堡镇站, 蓝线表示深水航道北导堤东端.

    Fig.  14  Temporal variations in residual water levels at Chongxi, Nanmen, and Baozhen hydrological stations as well as the Xuliujing model output site and the easternmost section of the northern dike of the Deepwater Navigation Channel in the case of wind only

    表  1  1950—2018年大通站各月平均径流量

    Tab.  1  Monthly mean river discharge at Datong station between 1950 to 2018

    1月2月3月4月5月6月7月8月9月10月11月12月
    径流量/( × 102 m3·s–1)116123167241334406498437388315224144
    下载: 导出CSV
  • [1] 王慧, 刘克修, 范文静, 等. 中国沿海增减水的变化特征及与海平面变化的关系 [J]. 海洋学报, 2017, 39(6): 10-20.
    [2] 裴文斌, 牛桂芝, 董海军. 余水位及潮汐差分方法 [J]. 水道港口, 2007, 28(6): 439-443.
    [3] 牛桂芝, 董海军, 裴文斌. 余水位的成因及其特性 [C]//第二十一届海洋测绘综合性学术研讨会论文集. 中国测绘学会, 2009.
    [4] FRISON T W. Dynamics of the residuals in estuary water levels [J]. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 2000, 25(4): 359-364.
    [5] 陈吉余, 沈焕庭, 恽才兴. 长江河口动力过程和地貌演变 [M]. 上海: 上海科学技术出版社, 1988: 31-37.
    [6] WONG K C, GARVINE R W. Observations of wind-induced, subtidal variability in the Delaware estuary [J]. Journal of Geophysical Research: Oceans, 1984, 89(C6): 10589-10597.
    [7] DENES T A, CAFFREY J M. Changes in seasonal water transport in a Louisiana estuary, Fourleague Bay, Louisiana [J]. Estuaries, 1988, 11(3): 184-191.
    [8] HESS K. Water level simulation in bays by spatial interpolation of tidal constituents, residual water levels, and datums [J]. Continental Shelf Research, 2003, 23(5): 395-414.
    [9] BUSCHMAN F A, HOITINK A J F, VAN DER VEGT M, et al. Subtidal water level variation controlled by river flow and tides [J]. Water Resources Research, 2009, 45(10): W10420.
    [10] SASSI M G, HOITINK A J F. River flow controls on tides and tide-mean water level profiles in a tidal freshwater river [J]. Journal of Geophysical Research: Oceans, 2013, 118(9): 4139-4151.
    [11] POERBANDONO, HANDOKO E Y, ADYTIA D. Extremes of residual water levels in the West of Java Sea, Indonesia[C]//AIP Conference Proceedings. AIP Publishing LLC, 2018, 1987(1): 020081.
    [12] CAI H, YANG Q, ZHANG Z, et al. Impact of river-tide dynamics on the temporal-spatial distribution of residual water level in the Pearl River channel networks [J]. Estuaries and Coasts, 2018, 41(7): 1885-1903.
    [13] 蔡华阳, 杨昊, 郭晓娟, 等. 珠江磨刀门河口径潮动力耦合条件下余水位的多时空尺度分析 [J]. 海洋学报, 2018, 40(7): 57-67.
    [14] 洪鹏锋, 杜文印. 强人类活动驱动下珠江磨刀门河口潮汐动力增强原因初探 [J]. 人民珠江, 2019, 40(9): 28-32.
    [15] 宋永港, 朱建荣, 吴辉. 长江河口北支潮位与潮差的时空变化和机理 [J]. 华东师范大学学报(自然科学版), 2011(6): 10-19.
    [16] CAI H, SAVENIJE H H G, GAREL E, et al. Seasonal behaviour of tidal damping and residual water level slope in the Yangtze River estuary: Identifying the critical position and river discharge for maximum tidal damping [J]. Hydrology and Earth System Sciences, 2019, 23(6): 2779-2794.
    [17] 张先毅, 黄竞争, 杨昊, 等. 长江河口潮波传播机制及阈值效应分析 [J]. 海洋与湖沼, 2019, 50(4): 788-798.
    [18] 黄竞争, 张先毅, 吴峥, 等. 长江感潮河段潮波传播变化特征及影响因素分析 [J]. 海洋学报, 2020, 42(3): 25-35.
    [19] BLUMBERG A F, MELLOR G L. A description of a three‐dimensional coastal ocean circulation model [J]. Three-dimensional Coastal Ocean Models, 1987(4): 1-16.
    [20] WU H, ZHU J R, SHEN J, et al. Tidal modulation on the Changjiang River plume in summer [J]. Journal of Geophysical Research: Oceans, 2011, 116(C8): 192-197.
    [21] LÜ H, ZHU J R. Impact of the bottom drag coefficient on saltwater intrusion in the extremely shallow estuary [J]. Journal of Hydrology, 2018, 557: 838-850.
    [22] LARGE W G, POND S. Open ocean momentum flux measurements in moderate to strong winds [J]. Journal of Physical Oceanography, 1981, 11(3): 324-336.
    [23] 海洋图集编委会. 渤海黄海东海海洋图集: 水文 [M]. 北京: 海洋出版社, 1993.
    [24] RALSTON D K, GEYER W R, LERCZAK J A. Subtidal salinity and velocity in the Hudson River estuary: Observations and modeling [J]. Journal of Physical Oceanography, 2008, 38(4): 753-770.
    [25] LI L, ZHU J R, WU H, et al. A numerical study on water diversion ratio of the Changjiang (Yangtze) estuary in dry season [J]. Chinese Journal of Oceanology and Limnology, 2010, 28(3): 700-712.
    [26] 朱建荣, 胡松. 河口形状对河口环流和盐水入侵的影响 [J]. 华东师范大学学报(自然科学版), 2003(2): 70-75.
    [27] CAI H, SAVENIJE H H G, JIANG C. Analytical approach for predicting fresh water discharge in an estuary based on tidal water level observations [J]. Hydrology and Earth System Sciences, 2014, 18(10): 4153.
    [28] LI L, ZHU J, WU H. Impacts of wind stress on saltwater intrusion in the Yangtze Estuary [J]. Science China Earth Sciences, 2012, 55: 1178-1192.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  177
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-15
  • 刊出日期:  2021-07-25

目录

    /

    返回文章
    返回