中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 3
May  2015
Turn off MathJax
Article Contents
ZHANG Xian-hui, CHEN Zhen-lian, CHEN Xiao-bo, LI Jun. Characterization of and insight into the electrochemistry of MoS2[J]. Journal of East China Normal University (Natural Sciences), 2015, (3): 105-115. doi: 10.3969/j.issn.1000-5641.2015.03.013
Citation: ZHANG Xian-hui, CHEN Zhen-lian, CHEN Xiao-bo, LI Jun. Characterization of and insight into the electrochemistry of MoS2[J]. Journal of East China Normal University (Natural Sciences), 2015, (3): 105-115. doi: 10.3969/j.issn.1000-5641.2015.03.013

Characterization of and insight into the electrochemistry of MoS2

doi: 10.3969/j.issn.1000-5641.2015.03.013
  • Received Date: 2014-03-27
  • Publish Date: 2015-05-25
  • By combining experimental methods with first-principles calculations this article reports the determination of the structural characters of MoS2 in the first discharging and charging cycling, where the first stage phase transformation occurs.The significant voltage plateau at 1.1 V is attributed to lithium insertion on octahedral vacancy sites of 2H-Lix MoS2 with lithium concentration (x)up to 0.56, which corresponds with the calculated voltage and phase stability of MoS$_{2}$. However, the ensuing amorphization for $x$ over 1.0 immediately removes the plateau character from the charging curve. Furthermore, we offer a comparison to LiCoO2 to investigate the physical mechanism of the anode and cathode voltaic
  • loading
  • [1]ZHOU X, WAN L J, GUO Y G. Synthesis of MoS$_{2$ nanosheet--graphene

    nanosheet hybrid materials for stable lithium storage[J]. Chemical

    Communications, 2013, 49(18): 1838.
    [2] SATHISH M, TOMAI T, HONMA I. Graphene anchored with Fe$_3$O$_4$ nanoparticles

    as anode for enhanced Li-ion storage[J]. Journal of Power Sources,

    2012, 217: 85-91.
    [3] CHEN S, WANG Y, AHN H, et al. Microwave hydrothermal synthesis of high

    performance tin-graphene nanocomposites for lithium ion batteries

    [J]. Journal of Power Sources, 2012, 216: 22-27.
    [4] PARK S K, YU S H, WOO S, et al. A facile and green strategy for the

    synthesis of MoS$_2$ nanospheres with excellent Li-ion storage

    properties [J]. Cryst Eng Comm, 2012, 14(24): 8323.
    [5] WINTER M, BRODD R J. What are batteries, fuel cells, and

    supercapacitors [J]. Chem Rev 2004, 104: 4245-4269.
    [6] CHANG K, CHEN W. In situ synthesis of MoS$_{2$/graphene nanosheet

    composites with extraordinarily high electrochemical performance for

    lithium ion batteries [J]. Chemical Communications, 2011, 47(14):

    4252.
    [7] BRIVIO J, ALEXANDER D T L, KIS A. Ripples and layers in ultrathin

    MoS$_{2$ embranes [J]. Nano Letters, 2011, 11(12): 5148-5153.
    [8] TENNE R, MARGULIS L, GENUT M, et al. Polyhedral and cylindrical

    structures of tungsten disulphide [J]. Letters to Nature, 1992, 360:

    4-6.
    [9] RAMAKRISHNAMATTE H S S, GOMATHI A, MANNA A K, et al. MoS$_{2$ and

    WS$_{2$ Analogues of graphene [J]. Angewandte Chemie, 2010,

    122(24): 4153-4156.
    [10] WHITTINGHAM M S, GAMBLE JR F R. The lithium intercalates of the

    transition metal dichalcogenides [J]. Materials Research Bulletin,

    1975, 10(5): 363-371.
    [11] WHITTINGHAM M S. The role of ternary phases in cathode reactions [J].

    Journal of The Electrochemical Society, 1976, 123(3): 315-320.
    [12] DINO T, CHRISTIAN P, JAEGERMANN W. Origin of the

    electrochemical potential in intercalation electrodes [J]. J Phys

    Chem B, 2004, 108: 6093-6099.
    [13] WANG Q, LI J. Facilitated lithium storage in MoS$_2$ overlayers supported

    on coaxial carbon nanotubes [J]. J Phys Chem C, 2007, 111:

    1675-1682.
    [14] DING S, ZHANG D, CHEN J S, et al. Facile synthesis of hierarchical

    MoS$_{2$ microspheres composed of few-layered nanosheets and their

    lithium storage properties [J]. Nanoscale, 2012, 4(1): 95.
    [15] KWON J H, AHN H J, JEON M S, et al. The electrochemical properties of

    Li/TEGDME/MoS$_{2$ cells using multi-wall carbon nanotubes as a

    conducting agent [J]. Research on Chemical Intermediates, 2010,

    36(6/7): 749-759.
    [16] STEPHENSON T, LI Z, OLSEN B, et al. Lithium ion battery applications of

    molybdenum disulfide (MoS$_{2)$ nanocomposites [J]. Energy {\&

    Environmental Science, 2014, 7(1): 209.
    [17] CATHERINE M. ZELENSKI, DORHOUT P K. Template synthesis of

    near-monodisperse [J]. J Am Chem Soc 1998, 120: 734-742.
    [18] XIANHUI CHEN, FAN R. Low-temperature hydrothermal synthesis of

    transition [J]. Chem Mater, 2001, 13: 802 -805.
    [19] DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J].

    Nature, 2001, 414(6861): 332-337.
    [20] CHANG K, CHEN W X, MA L, et al. Graphene-like MoS$_2$/amorphous

    carbon composites with high capacity and excellent stability as

    anode materials for lithium ion batteries [J]. Journal of Materials

    Chemistry, 2011, 21(17): 6251.
    [21] YANG L, WANG S, MAO J, et al. Hierarchical MoS$_{2$/polyaniline

    nanowires with excellent electrochemical performance for lithium-ion

    batteries [J]. Advanced Materials, 2013, 25(8): 1180-1184.
    [22] MAP Y, HAERING R R. Structural destabilization induced by lithium

    intercalation in MoS$_{2$ andrelated compounds [J]. Canadian

    Journal of Physics, 1983, 61: 76-84
    [23] DU G, GUO Z, WANG S, et al. Superior stability and high capacity of

    restacked molybdenum disulfide as anode material for lithium ion

    batteries [J]. Chemical Communications, 2010, 46(7): 1106.
    [24] GORDON R A, YANG D, CROZIER E D, et al. Structures of exfoliated single

    layers of WS$_{2$, MoS$_{2$, and MoSe$_{2$ in aqueous suspension

    [J]. Physical Review B, 2002, 65(12): 125407.
    [25] CHEN X, CHEN Z, LI J. Critical electronic structures controlling phase

    transitions induced by lithium ion intercalation in molybdenum

    disulphide [J]. Chinese Science Bulletin, 2013, 58(14): 1632-1641.
    [26] CHEN X, HE J, SRIVASTAVA D, et al. Electrochemical cycling

    reversibility of LiMoS$_{2$ using first-principles calculations

    [J]. Applied Physics Letters, 2012, 100(26): 263901.
    [27] JOHN P, KIERON B, ERNZERHOF M. Generalized gradient

    approximation made simple [J]. Phys Rev Lett, 1996, 77: 3865-3868.
    [28] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the

    liquid-metal-amorphous-semiconductor transition in germanium [J].

    Physical Review B, 1994, 49(20): 251-269.
    [29] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio

    total-energy calculations using a plane-wave basis set [J]. Physical

    Review B, 1996, 54(16): 169-186.
    [30] BLOCHL P E. Projector augmented-wave method [J]. Physical Review B,

    1994, 50(24): 953-979.
    [31] GRIMME S. Semiempirical GGA-type density functional constructed with a

    long-range dispersion correction [J]. Journal of Computational

    Chemistry, 2006, 27(15): 1787-1799.
    [32] CHEN Z, LI J, ZHANG Z. First principles investigation of electronic

    structure change and energy transfer by redox in inverse spinel

    cathodes LiNiVO$_{4$ and LiCoVO$_{4$ [J]. Journal of Materials

    Chemistry, 2012, 22(36): 18968.
    [33] NEUGEBAUER J, SCHEFFLER M. Adsorbate-substrate and adsorbate-adsorbate

    interactions of Na and K adlayers on Al(111) [J]. Physical Review B,

    1992, 46(24): 16067-16080.
    [34] MAKOV G, PAYNE M. Periodic boundary conditions in ab initio

    calculations [J]. Physical Review B, 1995, 51(7): 4014-4022.
    [35] ZHANG C, WU H B, GUO Z, et al. Facile synthesis of carbon-coated

    MoS$_{2$ nanorods with enhanced lithium storage properties [J].

    Electrochemistry Communications, 2012, 20: 7-10.
    [36] HWANG H, KIM H, CHO J. MoS$_{2$ nanoplates consisting of disordered

    graphene-like layers for high rate lithium battery anode materials

    [J]. Nano Letters, 2011, 11(11): 4826-4830.
    [37] DAS S K, MALLAVAJULA R, JAYAPRAKASH N, et al. Self-assembled

    MoS$_{2$-carbon nanostructures: influence of nanostructuring and

    carbon on lithium battery performance [J]. Journal of Materials

    Chemistry, 2012, 22(26): 12988.
    [38] FENG C, MA J, LI H, et al. Synthesis of molybdenum disulfide

    (MoS$_{2)$ for lithium ion battery applications [J]. Materials

    Research Bulletin, 2009, 44(9): 1811-1815.
    [39] FANG X, HUA C, GUO X, et al. Lithium storage in commercial MoS$_{2$ in

    different potential ranges [J]. Electrochimica Acta, 2012, 81:

    155-160.
    [40] LIU C, YU Z, NEFF D, et al. Graphene-based supercapacitor with an

    ultrahigh energy density [J]. Nano Letters, 2010, 10(12): 4863-4868.
    [41] GOODENOUGH J B, KIM Y. Challenges for rechargeable li batteries [J].

    Chemistry of Materials, 2010, 22(3): 587-603.
    [42] CHEN J, TAO Z L, SUO L. Lithium intercalation in

    open-ended TiS$_{2 $ nano-tubes [J]. Angewandte Chemie, 2003,

    115(19): 2197-2201.
    [43] JULIEN C M. Lithium intercalated compounds charge transfer and related

    properties [J]. Materials Science and Engineering R, 2003, 40:

    47-102.
    [44] DAHN J R, ZHENG T, LIU Y, et al. Mechanisms for lithium insertion in

    carbonaceous materials [J]. Science, 1995, 270(5236): 590-593.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (1257) PDF downloads(1808) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return