中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 4
Sep.  2016
Turn off MathJax
Article Contents
YANG Zhi-gang. The quantum correlation evolution properties of entangled coherent states in noisy environments[J]. Journal of East China Normal University (Natural Sciences), 2016, (4): 111-117. doi: 10.3969/j.issn.1000-5641.2016.04.013
Citation: YANG Zhi-gang. The quantum correlation evolution properties of entangled coherent states in noisy environments[J]. Journal of East China Normal University (Natural Sciences), 2016, (4): 111-117. doi: 10.3969/j.issn.1000-5641.2016.04.013

The quantum correlation evolution properties of entangled coherent states in noisy environments

doi: 10.3969/j.issn.1000-5641.2016.04.013
  • Received Date: 2015-06-24
  • Publish Date: 2016-07-25
  • In this paper, quantum correlation in an entangled coherent state (ECS) is extensively studied with four popular quantifiers, namely, entanglement of formation (E), quantum discord (QD), measurement-induced disturbance (MID) and geometric measure of quantum discord (GQD). Besides, the influence of amplitude damping noises on the quantum correlation is treated. It is found that, E decreases faster than QD.E (QD or MID) behaves quite similarly in an asymmetric and a symmetric noisy channel. Whats more, it is obvious that the Bell state is not always more entangled than the ECS.
  • loading
  • [1]

    [ 1 ] OLLIVIER H, ZUREK W H. A measure of the quantumness of correlation [J]. Phys Rev Lett, 2001, 88: 017901.
    [ 2 ] VEDRAL V. Classical correlations and entanglement in quantum measurements [J]. Phys Rev Lett, 2003, 90: 050401.
    [ 3 ] DAKIC B, VEDRAL V, BRUKNER C. Necessary and sufficient condition for nonzero quantum discord [J]. Phys Rev Lett, 2010, 105: 190502.
    [ 4 ] YE B L, LIU Y M, LIU X S, et al. Quantum correlations in a family of bipartite qubit-qutrit separable states [J]. Chin Phys Lett, 2013, 30: 020302.
    [ 5 ] DATTA A, GHARIBIAN S. Measurement-induced disturbances and nonclassical correlations of Gaussian states [J]. Phys Rev A, 2009, 79: 042325.
    [ 6 ] ZUREK W H. Quantum discord and Maxwell’s demons [J]. Phys Rev A, 2003, 67: 012320.
    [ 7 ] TANG H J, LIU Y M, CHEN J L, et al. Analytic expressions of discord and geometric discord in Werner derivatives [J]. Quant Inf Proc, 2014, 13(6): 1331-1344.
    [ 8 ] ALI M, RAU A R P, ALBER G. Quantum discord for two-qubit X states [J]. Phys Rev A, 2010, 81: 042105.
    [ 9 ] LU X M, MA J, XI Z, et al. Optimal measurements to access classical correlations of two-qubit states [J]. Phys Rev A, 2011, 83: 012327.
    [ 10 ] LUO S. Using measurement-induced disturbance to characterize correlations as classical or quantum [J]. Phys Rev A, 2008, 77:022301.
    [ 11 ] XU S, SONG X K, YE L. Measurement-induced disturbance and negativity in mixed-spin XXZ model [J]. Quant Inf Proc, 2014, 13(4): 1–12.
    [ 12 ] ESPOUKE P, PEDRAM P. Quantum correlation evolution of GHZ and W states under noisy channels using ameliorated measurement-induced disturbance [J]. Quant Inf Proc, 2015, 14(1): 303-319.
    [ 13 ] RAO B R, SRIKANTH R. Quantumness of noisy quantum walks: A comparison between measurement-induced [J]. Phys Rev A, 2008, 83: 064302.
    [ 14 ] CHAI C L. Two-mode nonclassical state via superposition of two-mode coherent states [J]. Phys Rev A, 1992, 46: 7187.
    [ 15 ] WANG X, SANDERS B C. Multipartite entangled coherent states [J]. Phys Rev A, 2001, 62: 012303. [ 16 ] LUND A P, RALPH T C, HASELGROVE H L. Fault-tolerant linear optical quantum computing with small amplitude coherent states [J]. Phys Rev Lett, 2008, 100: 030503.
    [ 17 ] WANG X. Quantum teleportation of entangled coherent states [J]. Phys Rev A, 2001, 64: 022302.
    [ 18 ] JEONG H, KIM M S. Efficient quantum computation using coherent states [J]. Phys Rev A, 2002, 65: 042305. [ 19 ] GE R C, GONG M, LI C F, et al. Quantum correlation and classical correlation dynamics in the spin-boson model [J]. Phys Rev A, 2010, 81: 064103.
    [ 20 ] PAZ J P, RONCAGLIA A J. Redundancy of classical and quantum correlations during decoherence [J]. Phys Rev A, 2009, 80: 042111.
    [ 21 ] XIE C M, LIU Y M, LI G F, et al. A note on quantum correlations in Werner states under two collective noises [J]. Quant Inf Proc, 2014, 13(12): 2713-2718.
    [ 22 ] SONG X T, LI H W, ZHANG C M, et al. Analysis of faraday-michelson quantum key distribution system with unbalanced attenuation [J]. Chin Opt Lett, 2015, 13: 012701.
    [ 23 ] MODI K, PATEREK T, SON W, et al. Unified view of quantum and classical correlations [J]. Phys Rev Lett, 2010, 104: 080501.
    [ 24 ] PARK K, JEONG H. Entangled coherent states versus entangled photon pairs for practical quantum information processing [J]. Phys Rev A, 2010, 82: 062325.
    [ 25 ] YAO Y, LI H W, YIN Z Q, et al. The effect of channel decoherence on entangled coherent states: A theoretical analysis [J]. Phys Lett A, 2011, 375: 3762-3769.

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views (206) PDF downloads(455) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return