中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 2
Mar.  2017
Turn off MathJax
Article Contents
SHEN Yu-hao, TANG Zheng, PENG Wei. A negatively charged VSiON center for implementation as qubit[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 97-106. doi: 10.3969/j.issn.1000-5641.2017.02.013
Citation: SHEN Yu-hao, TANG Zheng, PENG Wei. A negatively charged VSiON center for implementation as qubit[J]. Journal of East China Normal University (Natural Sciences), 2017, (2): 97-106. doi: 10.3969/j.issn.1000-5641.2017.02.013

A negatively charged VSiON center for implementation as qubit

doi: 10.3969/j.issn.1000-5641.2017.02.013
  • Received Date: 2016-03-16
  • Publish Date: 2017-03-25
  • γ-Si3N4 is a nitrogen-based ultra-hard ceramic with Si atoms occupying both tetrahedral and octahedral sites in a spinel structure. Based on first-principles calculations, we investigate spin-polarized electronic structures and energetic stabilities of oxygenvacancy complex center (VSiON) consisting of a substituted oxygen atom and an adjacent tetrahedrally coordinated silicon vacancy in spinel silicon nitride (γ-Si3N4) with different charge states. We find that the negatively charged VSiON-1 center is stable in the p-type γ-Si3N4 and the defect center possesses an S=1 triplet ground state and a spin-conserved excited state with low excitation energy. By using a mean-field approximation, we estimate that the spin coherence time of VSiON is 0.4 s at T=0 K, which indicates that the VSiON-1 center is a promising candidate for spin coherent manipulation and qubit operation.
  • loading
  • [1]
    BENNETT C H, BESSETTE F, BRASSARD G, et al. Experimental quantum cryptography[J]. Journal of Cryptology, 1992, 5(1):3-28.
    [2]
    BEVERATOS A, BROURI R, GACOIN T, et al. Single photon quantum cryptography[J]. Physical Review Letters, 2002, 89(18):187901. doi:  10.1103/PhysRevLett.89.187901
    [3]
    DUTT M V G, CHILDRESS L, JIANG L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond[J]. Science, 2007, 5829(316):1312-1316.
    [4]
    DEGEN C L. Scanning magnetic field microscope with a diamond single-spin sensor[J]. Applied Physics Letters, 2008, 92(24):243111. doi:  10.1063/1.2943282
    [5]
    MAZE J R, STANWIX P L, HODGES J S, et al. Nanoscale magnetic sensing with an individual electronic spin in diamond[J]. Nature, 2008, 7213(455):644-647. http://cuaweb.mit.edu/Pages/Research/Report/Page.aspx?ReportId=10378
    [6]
    ZERR A, MIEHE G, SERGHIOU G, et al. Synthesis of cubic silicon nitride[J]. Nature, 1999, 6742(400):340-342.
    [7]
    ZERR A, SCHWARZ M, SCHMECHEL R, et al. New high-pressure nitrides[J]. Acta Crystallogr. A, 2002, 58:C47. https://www.researchgate.net/publication/244630187_New_high_pressure_nitrides
    [8]
    WEBER J R, KOEHL W F, VARLEY J B, et al. Quantum computing with defects[J]. Proceedings of the National Academy of Sciences, 2010, 107(19):8513-8518. doi:  10.1073/pnas.1003052107
    [9]
    WEBER J R, KOEHL W F, VARLEY J B, et al. Defects in SiC for quantum computing[J]. Journal of Applied Physics, 2011, 109(10):102417. doi:  10.1063/1.3578264
    [10]
    SON N T, CARLSSON P, Ul HASSAN J, et al. Divacancy in 4H-SiC[J]. Physical Review Letters, 2006, 96(5):055501. doi:  10.1103/PhysRevLett.96.055501
    [11]
    BARANOV P G, BUNDAKOVA A P, SOLTAMOVA A A, et al. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy[J]. Physical Review B, 2011, 83(12):125203. doi:  10.1103/PhysRevB.83.125203
    [12]
    KOEHL W F, BUCKLEY B B, HEREMANS F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide[J]. Nature, 2011, 7371(479):84-87. https://www.researchgate.net/publication/51768935_Room_temperature_coherent_control_of_defect_spin_qubits_in_silicon_carbide
    [13]
    WANG X, ZHAO M, WANG Z, et al. Spin-polarization of VGaON center in GaN and its application in spin qubit[J]. Applied Physics Letters, 2012, 100(19):192401. doi:  10.1063/1.4712595
    [14]
    TU Y, TANG Z, ZHAO X G, et al. A paramagnetic neutral VAlON center in wurtzite AlN for spin qubit application[J]. Applied Physics Letters, 2013, 103(7):072103. doi:  10.1063/1.4818659
    [15]
    HANSON R, MENDOZA F M, EPSTEIN R J, et al. Polarization and readout of coupled single spins in diamond[J]. Physical Review Letters, 2006, 97(8):087601. doi:  10.1103/PhysRevLett.97.087601
    [16]
    JELEZKO F, GAEBEL T, Popa I, et al. Observation of coherent oscillations in a single electron spin[J]. Physical Review Letters, 2004, 92(7):076401. doi:  10.1103/PhysRevLett.92.076401
    [17]
    Ching W Y, Mo S D, Tanaka I, et al. Prediction of spinel structure and properties of single and double nitrides[J]. Physical Review B, 2001, 63(6):064102. doi:  10.1103/PhysRevB.63.064102
    [18]
    Wells A F. Structural inorganic chemistry[M]. London:Oxford University Press, 2012.
    [19]
    Soignard E, Mcmillan P F. Raman spectroscopy of γ-Si3N4 and γ-Ge3N4 nitride spinel phases formed at high pressure and high temperature:Evidence for defect formation in nitride spinels[J]. Chemistry of materials, 2004, 16(18):3533-3542. doi:  10.1021/cm049797+
    [20]
    OZAKI T. Variationally optimized atomic orbitals for large-scale electronic structures[J]. Physical Review B, 2003, 67(15):155108. doi:  10.1103/PhysRevB.67.155108
    [21]
    OZAKI T, KINO H. Variationally optimized basis orbitals for biological molecules[J]. The Journal of Chemical Physics, 2004, 121(22):10879-10888. doi:  10.1063/1.1794591
    [22]
    TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations[J]. Physical Review B, 1991, 43(3):1993. doi:  10.1103/PhysRevB.43.1993
    [23]
    PERDEW J P, BURKE K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865. doi:  10.1103/PhysRevLett.77.3865
    [24]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Physical Review B, 1976, 13(12):5188. doi:  10.1103/PhysRevB.13.5188
    [25]
    OBA F, TATSUMI K, ADACHI H, et al. n-and p-type dopants for cubic silicon nitride[J]. Applied Physics Letters, 2001, 78(11):1577-1579. doi:  10.1063/1.1354667
    [26]
    FREYSOLDT C, NEUGEBAUER J, Van de Walle C G. Fully ab initio finite-size corrections for charged-defect supercell calculations[J]. Physical Review Letters, 2009, 102(1):016402. doi:  10.1103/PhysRevLett.102.016402
    [27]
    MATTILA T, ZUNGER A. Deep electronic gap levels induced by isovalent P and As impurities in GaN[J]. Physical Review B, 1998, 58(3):1367. doi:  10.1103/PhysRevB.58.1367
    [28]
    HOSSAIN F M, DOHERTy M W, Wilson H F, et al. Ab Initio electronic and optical properties of the N-V-center in diamond[J]. Physical Review Letters, 2008, 101(22):226403. doi:  10.1103/PhysRevLett.101.226403
    [29]
    CHANIER T, OPAHLE I, Sargolzaei M, et al. Magnetic state around cation vacancies in Ⅱ-Ⅵ semiconductors[J]. Physical Review Letters, 2008, 100(2):026405. doi:  10.1103/PhysRevLett.100.026405
    [30]
    SHINOZUKA Y. Electron-lattice interaction in nonmetallic materials:configuration coordinate diagram and lattice relaxation[J]. Japanese Journal of Applied Physics, 1993, 32(10R):4560. https://www.researchgate.net/publication/243729955_Electron-Lattice_Interaction_in_Nonmetallic_Materials_Configuration_Coordinate_Diagram_and_Lattice_Relaxation
    [31]
    BALASUBRAMANIAN G, NEUMANN P, Twitchen D, et al. Ultralong spin coherence time in isotopically engineered diamond[J]. Nature materials, 2009, 8(5):383-387. doi:  10.1038/nmat2420
    [32]
    MAURER P C, KUCSKO G, LATTA C, et al. Room-temperature quantum bit memory exceeding one second[J]. Science, 2012, 6086(336):1283-1286. http://www.sciencemag.org/content/336/6086/1283.short?related-urls=yes&legid=sci;336/6086/1283
    [33]
    PAGET D, LAMPEL G, SAPOVAL B, et al. Low field electron-nuclear spin coupling in gallium arsenide under optical pumping conditions[J]. Physical Review B, 1977, 15(12):5780. doi:  10.1103/PhysRevB.15.5780
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (207) PDF downloads(612) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return