中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 4
Jul.  2017
Turn off MathJax
Article Contents
WANG Yong-wei, GUO Yong-liang, ZHANG Wei, KE Xue-zhi. Interatomic potential fitting study of Ag, Si and C based on first-principle calculations[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 114-125. doi: 10.3969/j.issn.1000-5641.2017.04.010
Citation: WANG Yong-wei, GUO Yong-liang, ZHANG Wei, KE Xue-zhi. Interatomic potential fitting study of Ag, Si and C based on first-principle calculations[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 114-125. doi: 10.3969/j.issn.1000-5641.2017.04.010

Interatomic potential fitting study of Ag, Si and C based on first-principle calculations

doi: 10.3969/j.issn.1000-5641.2017.04.010
  • Received Date: 2016-07-22
  • Publish Date: 2017-07-25
  • In order to perform molecular dynamics simulations of Ag diffusion in SiC crystals, we use "force-matching" method to fit the interatomic interaction potentials of Ag, Si and C based on first-principle calculations. The effectiveness of our obtained potential functions are verified by the calculations of the lattice constants, cohesive energies, bulk modulus, elastic constants and defect formation energies, etc. The results show that the and interstitial formation energies of Si and C crystals and Si and C vacancy formation of SiC crystals calculated by our potentials are more accurate than that calculated by J. Tersoff's potentials. In addition, the formation energies of the 16 kinds of AgSiC three-atom defect systems can also be calculated accurately by our potentials. values of cohesive energies, lattice constants and bulk modulus can be calculated precisely by our potentials, and the maximum error does not exceed 0.6%. The values of vacancies
  • loading
  • [1]
    RUBIN S D. TRISO-coated particle fuel phenomenon identification and ranking tables (PIRTs) for fission product transport due to manufacturing, operations and accidents[R]. USA: US-NRC, 2004.
    [2]
    VERFONDERN K. Fuel performance and fission product behavior in gas-cooled reactors No. TECDOC-978[R]. Vienna: IAEA, 1997.
    [3]
    MINATO K, SAWA K, KOYA T, et al. Fission product release behavior of individual coated fuel particles for high-temperature gas-cooled reactors[J]. Nucl Technol, 2000, 131: 36-47. https://www.researchgate.net/publication/241947111_Fission_Product_Release_Behavior_of_Individual_Coated_Fuel_Particles_for_High-Temperature_Gas-Cooled_Reactors
    [4]
    SCHENK W, POTT G, NABIELEK H. Fuel accident performance testing for small HTRs[J]. J Nucl Mater, 1990, 175: 19-30. http://linkinghub.elsevier.com/retrieve/pii/002231159090342K
    [5]
    MINATO K, OGAWA T, FUKUDA K, et al. Release behavior of metallic fission products from HTGR fuel particles at 1 600 to 1 900 ℃[J]. J Nucl Mater, 1993, 202: 47-53. doi:  10.1016/0022-3115(93)90027-V
    [6]
    FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide[J]. J Nucl Mater, 2009, 389: 326-331. doi:  10.1016/j.jnucmat.2009.02.022
    [7]
    MACLEAN H, BALLINGER R, KOLAYA L, et al. The effect of annealing at 1500 ℃ on migration and release of ion implanted silver in CVD silicon carbide[J]. J Nucl Mater, 2006, 357: 31-47. doi:  10.1016/j.jnucmat.2006.05.043
    [8]
    BULLOCK R E. Fission-product release during postirradiation annealing of several types of coated fuel particles[J]. J Nucl Mater, 1984, 125: 304-319. doi:  10.1016/0022-3115(84)90558-0
    [9]
    PETTI D, BUONGIORNO J, MAKI J, et al. Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance[J]. Nucl Eng Des, 2003, 222: 281-297. doi:  10.1016/S0029-5493(03)00033-5
    [10]
    NABIELEK H, BROWN P E, OFFERMAN P. Silver release from coated particle fuel[J]. Nucl Technol, 1977, 35: 483-493. doi:  10.13182/NT35-483
    [11]
    VERFONDERN K, MARTIN R C, MOORMANNN R. Methods and data for HTGR fuel performance and radionuclide release modeling during normal operation and accidents for safety analyses No. JUEL-2721[R]. Germany: Forschungszentrum Jülich GmbH, 1993.
    [12]
    AMIAN W, STOVER D. Diffusion of silver and cesium in silicon-carbide coatings of fuel particles for hightemperature gas-cooled reactors[J]. Nucl Technol, 1983, 61: 475-486. doi:  10.13182/NT61-475
    [13]
    FRIEDLAND E, MALHERBE J B, VANDERBERG N G, et al. Study of silver diffusion in silicon carbide [J]. J Nucl Mater, 2009, 389: 326-331. doi:  10.1016/j.jnucmat.2009.02.022
    [14]
    MACLEAN H J. Silver transport in CVD silicon carbide [D]. Boston: MIT, 2004.
    [15]
    SHRADER D, KHALIL S, GERCZAK T, et al. Ag diffusion in cubic silicon carbide[J]. J Nucl Mater, 2010, 408: 257-271. http://www.sciencedirect.com/science/article/pii/S0022311511010063
    [16]
    KHALIL S, SWAMINATHAN N, SHRADER D, et al. Diffusion of Ag along 3 grain boundaries in 3C-SiC[J]. Phys Rev B, 2011, 84: 214104. doi:  10.1103/PhysRevB.84.214104
    [17]
    VOTER A F. Hyperdynamics: Accelerated molecular dynamics of infrequent events[J]. Phys Rev Lett, 1997, 78: 3908-3911. doi:  10.1103/PhysRevLett.78.3908
    [18]
    TERSOFF J. New empirical approach for the structure and energy of covalent systems[J]. Phys Rev B, 1988, 37: 6991-7000. doi:  10.1103/PhysRevB.37.6991
    [19]
    TERSOFF J. New empirical model for the structural properties of silicon[J]. Phys Rev Lett, 1986, 56: 632-635. doi:  10.1103/PhysRevLett.56.632
    [20]
    TERSOFF J. Empirical interatomic potential for carbon, with applications to amorphous carbon[J]. Phys Rev Lett, 1988, 61: 2879-2882. doi:  10.1103/PhysRevLett.61.2879
    [21]
    TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J]. Phys Rev B, 1989, 39: 5566-5568. doi:  10.1103/PhysRevB.39.5566
    [22]
    TERSOFF J. Empirical interatomic potential for silicon with improved elastic properties[J]. Phys Rev B, 1988, 38: 9902-9905. doi:  10.1103/PhysRevB.38.9902
    [23]
    FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Phys Rev B, 1986, 33: 7983-7991. doi:  10.1103/PhysRevB.33.7983
    [24]
    LI X P, CEPERLEY D M, MARTIN R M. Cohesive energy of silicon by the Green's-function monte carlo method[J]. Phys Rev B, 1991, 44: 10929-10932. doi:  10.1103/PhysRevB.44.10929
    [25]
    KOHAN A F, CEDER G, MORGAN D, et al. First-principles study of native point defects in ZnO[J]. Phys Rev B, 2000, 61: 15019-15027. doi:  10.1103/PhysRevB.61.15019
    [26]
    MURNAGHAN F D. The compressibility of media under extreme pressures[J]. Proceeding of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247. doi:  10.1073/pnas.30.9.244
    [27]
    BUTLER K T, VULLUM P E, MUGGERUD A M, et al. Structural and electronic properties of silver/silicon interfaces and implications for solar cell performance [J]. Phys Rev B, 2011, 83(23): 2155-2161. https://www.researchgate.net/profile/Keith_Butler/publication/235446230_Structural_and_electronic_properties_of_silversilicon_interfaces_and_implications_for_solar_cell_performance/links/559361f608ae5af2b0eb7aa9.pdf?disableCoverPage=true
    [28]
    KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a planewave basis set[J]. Phys Rev B, 1996, 54(16): 11169-11186. doi:  10.1103/PhysRevB.54.11169
    [29]
    BROMMER P, GÄHLER F. Potfit: Effective potentials from ab -initio data [J]. Simul Mater Sci Eng, 2007, 15: 295-304. doi:  10.1088/0965-0393/15/3/008
    [30]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77: 3865-3868. doi:  10.1103/PhysRevLett.77.3865
    [31]
    MARTIN R M. Electronic Structure: Basic Theory and Practical Methods[M]. Cambridge: Cambridge University Press, 2004.
    [32]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13: 5188-5200. doi:  10.1103/PhysRevB.13.5188
    [33]
    ERHART P, ALBE K. Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J]. Phys Rev B, 2005, 71(3): 035211. doi:  10.1103/PhysRevB.71.035211
    [34]
    MOORE C E. Atomic Energy Levels Volumer[M]. Washington D C: NBS, 1949.
    [35]
    AADERSON O L. The use of ultrasonic measurements under modest pressure to estimate compression at high pressure[J]. J Phys Chem Solids, 1966, 27: 547-565. doi:  10.1016/0022-3697(66)90199-5
    [36]
    DONOHUE J. The structures of the elements[J]. Diamond and Related Materials, 1974, 24(4): 436. DOI:  10.1016/j.diamond.2011.01.035.
    [37]
    YIN M T, COHEN M L. Microscopic theory of the phase transformation and lattice dynamics of Si [J]. Phys Rev Lett, 1980, 45: 1004-1007. doi:  10.1103/PhysRevLett.45.1004
    [38]
    CAR R, KELLY P J, OSHIYAMA A, et al. Microscopic theory of atomic diffusion mechanisms in silicon [J]. Phys Rev Lett, 1984, 52: 1814-1817. doi:  10.1103/PhysRevLett.52.1814
    [39]
    BARAFF G A, SCHLUTER M. Migration of interstitials in silicon [J]. Phys Rev B, 1984, 30: 3460-3469. doi:  10.1103/PhysRevB.30.3460
    [40]
    BREWER L. Lawrence berkeley laboratory report No. LB-3720[R]. California: Lawrence Berkeley Laboratory, 1977.
    [41]
    MCSKIMIN H J, ANDREATCH P. The elastic stiffness moduli of diamond[J]. J Appl Phys, 1972, 43: 985-987. doi:  10.1063/1.1661318
    [42]
    BERNHOLC J, ANTONELLI A, DELSOLE T M, et al. Mechanism of self-diffusion in diamond[J]. Phys Rev Lett, 1988, 61: 2689-2692. doi:  10.1103/PhysRevLett.61.2689
    [43]
    LEE D H, JOANNOPOULOS J D. Simple scheme for deriving atomic force constants: Application to SiC[J]. Phys Rev Lett, 1982, 48: 1846-1849. doi:  10.1103/PhysRevLett.48.1846
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article views (226) PDF downloads(536) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return