中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 4
Jul.  2017
Turn off MathJax
Article Contents
CHEN Shi-mei, Li Dan-ni, Ding Qing-qing, YU Na. Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 168-179. doi: 10.3969/j.issn.1000-5641.2017.04.015
Citation: CHEN Shi-mei, Li Dan-ni, Ding Qing-qing, YU Na. Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)[J]. Journal of East China Normal University (Natural Sciences), 2017, (4): 168-179. doi: 10.3969/j.issn.1000-5641.2017.04.015

Toxic effects of Cd2+ on the intestinal structure of Cypridopsis vidua (Ostracoda)

doi: 10.3969/j.issn.1000-5641.2017.04.015
More Information
  • Corresponding author: 禹娜, 女, 教授, 博士生导师, 研究方向为水生动物生态学.E-mail:nyu@bio.ecnu.edu.cn
  • Received Date: 2016-09-12
  • Publish Date: 2017-07-25
  • Cypridopsis vidua is one of the few ostracods which can surrive from heavy pollution water. The toxic effects of Cd2+ on C. vidua and its intestinal ultrastructure were examined using a static renewal system. The LC50 values for cadmium in C. vidua were 5.00, 2.01, 0.46 and 0.14 mg/L at 24, 48, 72 and 96 h exposure respectively, and the safe concentration of Cd2+ for long-term C. vidua survival was less than 0.014 mg/L. To observe the structure changes of its intestinal, four Cd2+ concentrations were set up, and two of them were below the safe concentration of Cd2+ (0.001 and 0.004 mg/L) and the other concentrations were above its safe concentration (0.016 and 0.064 mg/L). The experiment lasted for 7 days. When microstructure of C. vidua was observed, the gastrointestinal orga-nization was not damaged below the safe concentration; while the degree of injury showed a certain amount of time and dose effects in 24-72 hours above the safe concentration, and some structures among those surviving animals were slightly recovered in 7 days under same concentration. Sub-microscopic analysis of intestinal cells of C. vidua in two concentrations (0.004 and 0.064 mg/L) groups showed, different degrees of structure damage were found in the cell membrane, cytoplasm and organelles, which worsened with increasing Cd2+ con-centrations. Among these cellular structures, the damage to the membrane system of the cell was especially serious.
  • loading
  • [1]
    STANKOVIC S, JOVIC M, STANKOVIC A R, et al. Heavy metals in seafood mussels. Risks for human health. [M]//LICHTFOUSE E, SCHWARZBAUER J, ROBERT D, Environmental chemistry for a sustainable world: Volume 1-Nanotechnology and Health Risk. Netherlands: Springer, 2012: 311-373.
    [2]
    YANG J, LEWANDROWSKI K B. Trace elements, vitamins, and nutrition [M]//MCCLATCHEY K D. Clinical Laboratory Medicine. 2nd ed. Philadelphia: Lippincott Williams and Wilkins, 2002: 439-462.
    [3]
    GO Y M, ROEDE J R, ORR M, et al. Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of Cd Toxicity [J]. Toxicological Sciences, 2014, 139(1): 59-73. doi:  10.1093/toxsci/kfu018
    [4]
    ZHOU Q, KONG F, ZHU L. Ecotoxicology [M]. Beijing: Science Press, 2004: 56-58.
    [5]
    OMER S A, ELOBEID M A, FOUAD D, et al. Cadmium bioaccumulation and toxicity in tilapia fish (Oreochromis niloticus) [J]. Journal of Animal and Veterinary Advances, 2012, 11(10): 1601-1606. doi:  10.3923/javaa.2012.1601.1606
    [6]
    IARC (International Agency for Research on Cancer). Beryllium, Cadmium, Mercury, and Exposures in the Glass Manufacturing Industry [J]. IARC monographs on the evaluation of carcinogenic risks to humans, 1993, 58: 41-117. http://www.worldcat.org/title/beryllium-cadmium-mercury-and-exposures-in-the-glass-manufacturing-industry/oclc/31012683
    [7]
    LIU G, SHENG Z, WANG Y, et al. Glutathione peroxidase 1 expression, malondialdehyde levels and histological alterations in the liver of Acrossocheilus fasciatus exposed to cadmium chloride [J]. Gene, 2016, 578(2): 210-218. doi:  10.1016/j.gene.2015.12.034
    [8]
    DEFUR P L. Use and role of invertebrate models in endocrine disruptor research and testing [J]. National Research Council, Institute of Laboratory Animal Resources, 2004, 45(4): 484-493. doi:  10.1093/ilar.45.4.484
    [9]
    MIRTO S, DANOVARO R. Meiofaunal colonisation on artificial substrates: A tool for biomonitoring the environmental quality on coastal marine systems [J]. Marine Pollution Bulletin, 2004, 48(9-10): 919-926. doi:  10.1016/j.marpolbul.2003.11.016
    [10]
    SUTHERLAND T F, LEVINGS C D, PETERSEN S A, et al. The use of meiofauna as an indicator of benthic organic enrichment associated with salmonid aquaculture [J]. Marine Pollution Bulletin, 2007, 54(8): 1249-1261. doi:  10.1016/j.marpolbul.2007.03.024
    [11]
    ZHANG Q, HU G. Applications of meiobenthos in marine ecological monitoring [J]. Marine Information, 2008, 4: 28-29.
    [12]
    RUIZ F, GONZÁLEZ-REGALADO M L, BORREGO J, et al. Ostracoda and Foraminifera as short–term tracers of environmental changes in very polluted areas: The Odiel Estuary (SWSpain) [J]. Environment Pollution, 2004, 129(1): 49-61. doi:  10.1016/j.envpol.2003.09.024
    [13]
    YU N, CHEN S, LI E, et al. Tolerance of Physocypria kraepelini (Crustacean, Ostracoda) to water–borne ammonia, phosphate and pH value [J]. Journal of Environmet Science, 2009, 21: 1575-1580. doi:  10.1016/S1001-0742(08)62458-4
    [14]
    YU N, CHEN L, ZHAO Q. CCA of ostracod distribution and environmental factors in the Taihu Lake [J]. Acta Micropalaeontologica Sinica, 2007, 24: 53-56. http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT200701004.htm
    [15]
    RUIZ F, ABAD M, BODERGAT A M, et al. Freshwater ostracods as environmental tracers [J]. International Journal of Environmental Science and Technology, 2013(10): 1115-1128. https://www.researchgate.net/profile/Antonio_Toscano/publication/236009913_Freshwater_ostracods_as_environmental_tracers/links/00b49515c173ff1c08000000.pdf
    [16]
    KÜLKÖYLÜOĞLU O, SARI N, DÜGEL M, et al. Effects of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake Çubuk, Turkey) [J]. Limnologica-Ecology and Management of Inland Waters, 2014, 46: 99-108. doi:  10.1016/j.limno.2014.01.001
    [17]
    WEI C, YU N, ZHAO Q, et al. Canonical correspondence analysis of modern Ostracoda and environmental factors in the Dishui Lake, Shanghai [J]. Acta Micropalaeontological Sinica, 2015, 32(2): 115-124. https://www.researchgate.net/publication/281020669_Evaluation_of_water_quality_and_the_type_of_nourishment_in_the_eastern_zone_of_Lake_Chaohu_by_means_of_zooplankton
    [18]
    KÜLKÖYLÜOĞLU O. Ecology of freshwater Ostracoda (Crustacea) from lakes and reservoirs in Bolu, Turkey[J]. Journal of Freshwater Eecology, 2003, 18(3): 343-347. doi:  10.1080/02705060.2003.9663968
    [19]
    PIERI V, VANDEKERKHOVE J, GOI D. Ostracoda (Crustacea) as indicators for surface water quality: A case study from the Ledra River Basin (NE Italy) [J]. Hydrobiologia, 2012, 688: 25-35. doi:  10.1007/s10750-010-0568-1
    [20]
    KÜLKÖYLÜOĞLU O, SARI N. Ecological characteristics of the freshwater Ostracoda in Bolu Region (Turkey)[J]. Hydrobiologia, 2012, 688: 37-46. doi:  10.1007/s10750-010-0585-0
    [21]
    LORENSCHAT J, PÉREZ L, CORREA-METRIO A, et al. Diversity and spatial distribution of extant freshwater ostracodes (Crustacea) in ancient Lake Ohrid (Macedonia /Albania) [J]. Diversity, 2014, 6(3): 524-550. doi:  10.3390/d6030524
    [22]
    SCHNEIDER A, WETTERICH S, SCHIRRMEISTER L, et al. Freshwater ostracods (Crustacea) and environmental variability of polygon ponds in the tundra of the Indigirka Lowland, north-east Siberia [J]. Polar Research, 2016, 35. DOI:  10.3402/polar.v35.25225.
    [23]
    KHANGAROT BS, RAY PK. Sensitivity of midge larvae of Chironomus tentans Fabricius (Diptera: Chironomidae) to heavy metals [J]. Bulletin of Environment Contamination and Toxicololgy, 1989, 42(3): 325-330. doi:  10.1007/BF01699956
    [24]
    BERGIN F, KUCUKSEZGIN F, ULUTURHAN E, et al. The response of benthic Foraminifera and Ostracoda to heavy metal pollution in Gulf of Izmir (Eastern Aegean Sea) [J]. Estuarine, Coastal and Shelf Science, 2006, 66(3-4): 368-386. doi:  10.1016/j.ecss.2005.09.013
    [25]
    RATHORE RS. Studies on the use of some freshwater invertebrates as sensitive test models for the assessment of toxicity of environmental pollutants [D]. Lucknow: University of Lucknow, 2001: 1-196.
    [26]
    BELGIS Z C, PERSOONE G, BLAISE C. Cyst–based toxicity tests X V I-sensitivity comparision of the solid phase Heterocypris incongruens microbiotest with the Hyalella azteca and Chironomus riparius contact assays on freshwater sediments from Peninsula Harbour (Ontario, Canada) [J]. Chemosphere, 2003, 52(1): 95-101. doi:  10.1016/S0045-6535(03)00186-3
    [27]
    SÁNCHEZ-BAYO F. From simple toxicological models to prediction of toxic effects in time [J]. Ecotoxicology, 2009, 18: 343-354. doi:  10.1007/s10646-008-0290-1
    [28]
    [29]
    KHANGAROT BS, RAY PK. Response of a freshwater ostracod (Cypris subglobosa Sowerby) exposed to Copper at different pH levels [J]. Acta Hydrochimica et Hydrobiologica, 1987, 15(6): 553-558. doi:  10.1002/(ISSN)1521-401X
    [30]
    CHEN S, YU N, ZHOU Y, et al. Acute toxicity experiment of Cd2+, Zn2+ and Cu2+ in Physocypria kraepelini (Ostracoda) [J]. Acta Micropalaeontologica Sinica, 2010, 27(2): 118-124.
    [31]
    DU N. Crustacean [M]. Beijing: Science and Technology Press, 1993: 137-158.
    [32]
    LIM R P, WONG M C. The effects of pesticides on the population dynamics and production of Stenocypris major Baird (Ostracoda) in ricefields [J]. Archiv für Hydrobiologie, 1986, 106: 421-427. https://www.researchgate.net/publication/279625689_The_effect_of_pesticides_on_the_population_dynamics_and_production_of_Stenocypris_major_Baird_Ostracoda_in_rice_fields
    [33]
    KISS A. Limnological investigations of small water bodies in the Pilis Biosphere Reserve, Hungary. Part Ⅱ. Köegyi-tó and Unkás-tócsa [J]. Opuscula Zoologica (Budapest), 2001, 33: 67-74.
    [34]
    SHORNIKOV E I, TREBUKHOVA Y A. Ostracods of brackish and fresh waters of southwestern coast of Peter the Great Bay [M]//KASYANOV V L, VASCHENKO M A, PITRUK D L, The state of environment and biota of the southwestern part of Peter the Great Bay and the Tumen River mouth. Vladivostok: Dalnauka, 2001: 56-84.
    [35]
    KÜLKÖYLÜOĞLU O. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey [J]. Ecological Indicators, 2004, 4(2): 139-147. doi:  10.1016/j.ecolind.2004.01.004
    [36]
    KÜLKÖYLÜOĞLU O. Ecology and phenology of freshwater ostracods in Lake Gölköy (Bolu, Turkey) [J]. Aquatic Ecology, 2005, 39(3): 295-304. doi:  10.1007/s10452-005-0782-5
    [37]
    KÜLKÖYLÜOĞLU O, DÜGEL M, KILIÇ M. Ecological requirements of Ostracoda (Crustacea) in a heavily polluted shallow lake, Lake Yeniçağa (Bolu, Turkey) [J]. Hydrobiologia, 2007, 585(1): 119-133. doi:  10.1007/s10750-007-0633-6
    [38]
    ROCA J R, BALTANAS A, UIBLEIN F. Adaptive responses in Cypridopsis vidua (Crustacea: Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis) [J]. Hydrobiologia, 1993, 262(2): 127-131. doi:  10.1007/BF00007513
    [39]
    CYWINSKA A, CRUMP D, LEAN D. Influence of UV radiation on four freshwater invertebrates [J]. Photochemistry and Photobiology, 2000, 72(5): 652-659. doi:  10.1562/0031-8655(2000)072<0652:IOUROF>2.0.CO;2
    [40]
    CYWINSKA A, HEBERT P D N. Origins of clonal diversity in the hypervariable asexual ostracode Cypridopsis vidua [J]. Journal of Evolutionary Biology, 2002, 15(1): 134-145. doi:  10.1046/j.1420-9101.2002.00362.x
    [41]
    HUNT G, PARK L E, LABARBERA M. A novel crustacean swimming stroke: coordinated four–paddled locomotion in the cypridoidean ostracode Cypridopsis vidua (Müller) [J]. Biological Bulletin, 2007, 212(1): 267-273. https://www.researchgate.net/publication/6504776_A_novel_crustacean_swimming_stroke_Coordinated_four-paddled_locomotion_in_the_cypridoidean_ostracode_Cypridopsis_vidua_Muller
    [42]
    ARNAUD J, BRUNET M, MAZZA J. Studies on the midgut of Centropages typicus (Copepod, Calanoida). Structural and Ultrastructural Data [J]. Cell and Tissue Research, 1978, 187(2): 333-353. doi:  10.1007%2FBF00224375.pdf
    [43]
    REYNOLDS E S. The use of lead citrate at high pH as an electron opaque stain in electron microscopy [J]. Journal of Cell Biology, 1963, 17: 208-212. doi:  10.1083/jcb.17.1.208
    [44]
    HUI X. Environmental Toxicology [M]. Beijing: Chemical Industry Publishing House, 2003, 266-276.
    [45]
    REISH D L, OSHIDA P S. Manual of methods in aquatic environment research, part 10: short–term static bioassays [J]. FAO Fisheries Technical Paper, 1987, 247: 1-62. http://www.worldcat.org/title/manual-of-methods-in-aquatic-environment-research-part-10-short-term-static-bioassays/oclc/17236833
    [46]
    SPRAGUE J B. Measurement of pollutant toxicity to fish-Ⅲ: Sublethal effects and "safe" concentrations [J]. Water Research, 1971, 5(6): 245-266. doi:  10.1016/0043-1354(71)90171-0
    [47]
    BROOKS A, WHITE R M, PATON D C. Effects of heavy metals on the survival of Diacypris compacta (Herbst) (Ostracoda) from the Coorong, South Australia [J]. International Journal of Salt Lake Research, 1995, 4(2): 133-163. doi:  10.1007/BF01990800
    [48]
    VARDIA H K, RAO P S, DURVE V S. Effect of copper, cadmium and zinc on fish-food organisms, Daphnia lumholtzi and Cypris subglobosa [J]. Proceedings: Animal Sciences, 1988, 97(2): 175-180. doi:  10.1007/BF03179945
    [49]
    SHUHAIMI-OTHMAN M, NADZIFAH Y, NUR-AMALINA R et al. Toxicity of metals to a freshwater ostracod: Stenocypris major [J]. Journal of Toxicology, 2011, (3): 1-8. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090608/pdf/JT2011-136104.pdf
    [50]
    YILMAZ F, KÜLKÖYLÜOĞLU O. Tolerance, optimum ranges, and ecological requirements of freshwater Ostracoda (Crustacea) in Lake Aladağ (Bolu, Turkey) [J]. Ecological Research, 2006, 21(2): 165-173. doi:  10.1007/s11284-005-0121-2
    [51]
    SAIPAN P, TENGJAROENKUL B, PRAHKARNKAEO K. Accumulation of Arsenic and Cadmium in foods of animal origin collected from the local markets in northeastern region Thailand [J]. International Journal of Animal & Veterinary Advances, 2014, 6(4): 130-134. http://www.maxwellsci.com/print/ijava/v6-130-134.pdf
    [52]
    MENKE A, MUNTNER P, SILBERGELD E K, et al. Cadmium levels in urine and mortality among U.S. adults[J]. Environmental Health Perspectives, 2009, 117(2): 190-196. doi:  10.1289/ehp.11236
    [53]
    BERNHOFT R A. Cadmium Toxicity and Treatment [J]. The Scientific World Journal, 2013(7): 66-67. http://www.ncbi.nlm.nih.gov/pmc/articles/instance/3686085/pdf/TSWJ2013-394652.pdf
    [54]
    TAO S, LIANG T, CAO J, et al. Synergistic effect of copper and lead uptake by fish [J]. Ecotoxicology and Environmental Safety, 1999, 44(2): 190-195. doi:  10.1006/eesa.1999.1822
    [55]
    ZHOU X, ZHU G, SUN J, et al. Toxicity of copper, zinc, lead, cadmium to tissue's cellular DNA of the fish (Carassius auratus) [J]. Acta Agriculture Nucleatae Sinica, 2001, 15(3): 167-173.
    [56]
    ZALUPS R K, AHMAD S. Molecular handling of cadmium in transporting epithelia [J]. Toxicology and Applied Pharmacology, 2003, 186(3): 163-188. doi:  10.1016/S0041-008X(02)00021-2
    [57]
    LOEBUS J, LEITENMAIER B, MEISSNER D, et al. The major function of a metallothionein from the aquatic fungus Heliscus lugdunensis in cadmium detoxification [J]. Journal of Inorganic Biochemistry, 2013, 127: 253-260. doi:  10.1016/j.jinorgbio.2013.06.001
    [58]
    SHUKLA G S, HUSAIN T, SRIVASTAVA R S, et al. Glutathione peroxidase and catalase in livers, kidney, testis and brain regions of rats following cadmium exposure and subsequent withdrawal [J]. Industrial Health, 1989, 27(2): 59-69. doi:  10.2486/indhealth.27.59
    [59]
    LIU R, LIU Y. Study on relationship between lipid perxidation and inviability of isolated rat hepatocytes caused by Cadmium [J]. China Environmental Science, 1990, 10(3): 187-191.
    [60]
    VENUGOPAL N, ROMESH T R S L. Effects of cadmium on antioxidant enzyme activities and lipid pemxidation in freshwater field crab barytelphusa guerlni [J]. Bulletin of Environment Contamination Toxicology, 1997, 59: 132-138. doi:  10.1007/s001289900455
    [61]
    SOEGIANTO A, CHAMANTIER-DAURES M, TRILLES J P, et al. Impact of cadmium on the structure of gills and epipodites of the shrimp Penaeus japonicas (Crustacea: Decapoda) [J]. Aquatic Living Resources, 1999, 12(1): 57-70. doi:  10.1016/S0990-7440(99)80015-1
    [62]
    LIU X, ZHOU Z, CHEN L. Effect of Cadmium on antioxidant enzyme activities of the juvenile Eniocheir sinensis[J]. Marine Sciences, 2003, 27(8): 59-63. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYKX200308015.htm
    [63]
    LEE S M, KIM H L, LEE S, et al. Toxicogenomic and signaling pathway analysis of low-dose exposure to cadmium chloride in rat liver [J]. Molecular & Cellular Toxicology, 2013, 9(4): 407-413. doi:  10.1007/s13273-013-0050-z
    [64]
    YANG Y, JIA X. Joint toxicity of Cu2+, Zn2+, and Cd2+ to tadpole of Bufo bufo gargarizans [J]. Chinese Journal of Applied and Environmental Biology, 2006, 12(3): 356-359. https://www.researchgate.net/publication/283390484_Experimental_Analysis_in_Resistance_of_Toxic_Effects_of_Cd2_on_Potamogeton_crispus_Induced_by_Exogenous_Acetosalicylic_Acid
    [65]
    GOBE G, CRANE D. Mitochondria, reactive oxygen species and cadmium toxicity in the kidney [J]. Toxicology Letters, 2010, 198(1): 49-55. doi:  10.1016/j.toxlet.2010.04.013
    [66]
    LIU D, YAN B, YANG J, et al. Mitochondrial pathway of apoptosis in the hepatopancreas of the freshwater crab Sinopotamon yangtsekiense exposed to cadmium [J]. Aquatic Toxicology, 2011, 105(3-4): 394-402. doi:  10.1016/j.aquatox.2011.07.013
    [67]
    CASALINO E, CALZARETTI G, SBLANO C, et al. Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium [J]. Toxicology, 2002, 179(1-2): 37-50. doi:  10.1016/S0300-483X(02)00245-7
    [68]
    LIU D H, WANG M, ZOU J H, et al. Uptake and accumulation of cadmium and some nutrientions by roots and shoots of maize (Zea mays L.) [J]. Pakistan Journal of Botany, 2006, 38(3): 701-709. https://www.researchgate.net/publication/288428720_Uptake_and_accumulation_of_cadmium_and_some_nutrient_ions_by_roots_and_shoots_of_maize_Zea_mays_L
    [69]
    WANG L, SUN H. Effect of cadmium on ultrastructure of myocardial cell of freshwater crab, Sinopotamon yangtsekiense [J]. Acta Hydrobiogica Sinica, 2002, 26(1): 8-13. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SSWX200201001.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article views (158) PDF downloads(545) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return