中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 2
Mar.  2018
Turn off MathJax
Article Contents
YAN Jia-qi, LI Wei, LOU Shi-tao, ZHANG Xiao-lei. Coherent acoustic phonon inmagnetic thin films excited by femtosecond laser[J]. Journal of East China Normal University (Natural Sciences), 2018, (2): 109-114. doi: 10.3969/j.issn.1000-5641.2018.02.011
Citation: YAN Jia-qi, LI Wei, LOU Shi-tao, ZHANG Xiao-lei. Coherent acoustic phonon inmagnetic thin films excited by femtosecond laser[J]. Journal of East China Normal University (Natural Sciences), 2018, (2): 109-114. doi: 10.3969/j.issn.1000-5641.2018.02.011

Coherent acoustic phonon inmagnetic thin films excited by femtosecond laser

doi: 10.3969/j.issn.1000-5641.2018.02.011
  • Received Date: 2017-04-19
  • Publish Date: 2018-03-25
  • The interaction between the femtosecond laser pulse and the MnIr layer in the magnetic thin film excites the coherent acoustic phonon with an initial phase of 90° and a propagation velocity of 4 300 m/s. The vibration frequency of the acoustic phonon is independent of the laser energy density and is inversely proportional to the total thickness of the magnetic thin film. And the acoustic phono can propagate in the adjacent metal layers due to the high lattice matching. The electron temperature in the magnetic thin film increases sharply absorbing by femtosecond laser pulse, then an decreasing electron temperature gradient with increasing depth is generated instantaneously by the absorption of the laser which lead to the lattice oscillate coherently in the depth direction, that is, the acoustic phonon. In addition, the frequency of the acoustic phonon changes caused by the applied magnetic field is within the experimental error range, indicating that the magnetic interaction is very weak compared to the electrical interaction in the lattice.
  • loading
  • [1]
    ROSSIGNOL C, RAMPNOUX J M, PERTON M, et al. Generation and detection of shear acoustic waves in metal submicrometric films with ultrashort laser pulses[J]. Physical Review Letters, 2005, 94:166106. doi:  10.1103/PhysRevLett.94.166106
    [2]
    PARK H, WANG X, NIE S, et al. Mechanism of coherent acoustic phonon generation under nonequilibrium conditions[J]. Physical Review B, 2005, 72:100301. doi:  10.1103/PhysRevB.72.100301
    [3]
    WU S, GEISER P, JUN J, et al. Long-lived, coherent acoustic phonon oscillations in GaN single crystals[J]. Applied Physics Letters, 2006, 88:041917. doi:  10.1063/1.2168246
    [4]
    ROSSIGNOL C, PERRIN B. Interferometric detection in picoseconds ultrasonics for nondestructive testing of submicrometric opaque multilayered samples:TiN/AlCu/TiN/Ti/Si[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(8):1354-1359. doi:  10.1109/TUFFC.2005.1509794
    [5]
    WANG D, CROSS A, GUARINO G, et al. Time-resolved dynamics of coherent acoustic phonons in CdMnTe diluted-magneticsingle crystals[J]. Applied Physics Letters, 2007, 90:211905. doi:  10.1063/1.2738368
    [6]
    LIM D, AVERITT R D, DEMSAR J, et al. Coherent acoustic phonons in hexagonal manganite LuMnO3[J]. Applied Physics Letters, 2003, 83(23):4800-4802. doi:  10.1063/1.1630847
    [7]
    MILLER J K, QI J, XU Y, et al. Near-bandgap wavelength dependence of long-lived traveling coherent longitudinal acousticphonons in GaSb-GaAsheterostructures[J]. Physical Review B, 2006, 74:113313. doi:  10.1103/PhysRevB.74.113313
    [8]
    WEN Y C, CHOU L C, LIN H H, et al. Efficient generation of coherent acoustic phonons in (111) InGaAs/GaAs multiple quantum wells through piezoelectric effects[J]. Applied Physics Letters, 2007, 90:172102. doi:  10.1063/1.2731441
    [9]
    THOMSEN C, STRAIT J, VARDENY Z, et al. Coherent phonon generation and detection by picosecond light pulses[J]. Physical Review Letters, 1984, 53(10):989-992. doi:  10.1103/PhysRevLett.53.989
    [10]
    THOMSEN C, GRAHN H T, MARISETAL H J, et al. Surface generation and detection of phonons by picosecond light pulses[J]. Physical Review B, 1986, 34(6):4129-4138. doi:  10.1103/PhysRevB.34.4129
    [11]
    OGI H, FUJⅡ M, NAKAMURA N, et al. Resonance acoustic-phonon spectroscopy for studying elasticity of ultrathin films[J]. Applied Physics Letters, 2007, 90:191906. doi:  10.1063/1.2737819
    [12]
    NAKAMURA N, URANISHI A, WAKITA M, et al. Elastic stiffness of L10 FePt thin film studied by picosecond ultrasonics[J]. Applied Physics Letters, 2011, 98:101911. doi:  10.1063/1.3562031
    [13]
    HASE M, ISHIOKA K, DEMSAR J, et al. Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals[J]. Physical Review B, 2005, 71(18):184301. doi:  10.1103/PhysRevB.71.184301
    [14]
    ZEIGER H J, VIDAL J, CHENG T K, et al. Theory for displacive excitation of coherent phonons[J]. Physical Review B, 1992, 45(2):768-778. doi:  10.1103/PhysRevB.45.768
    [15]
    KUZNETSOV A V, STANTON C J. Theory of coherent phonon oscillations in semiconductors[J]. Physical Review Letters, 1994, 73(24):3243-3246. doi:  10.1103/PhysRevLett.73.3243
    [16]
    张郑兵, 马小柏, 金钻明, 等. Fe/Si薄膜中相干声学声子的光激发研究[J].物理学报, 2012, 61(9):097401. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_wlxb201209061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views (258) PDF downloads(308) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return