中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 3
May  2018
Turn off MathJax
Article Contents
SU Ya-pan, PAN Hai-lin, ZHAO Zhen-jie, YUAN Meng-ping. Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons[J]. Journal of East China Normal University (Natural Sciences), 2018, (3): 129-135, 156. doi: 10.3969/j.issn.1000-5641.2018.03.014
Citation: SU Ya-pan, PAN Hai-lin, ZHAO Zhen-jie, YUAN Meng-ping. Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons[J]. Journal of East China Normal University (Natural Sciences), 2018, (3): 129-135, 156. doi: 10.3969/j.issn.1000-5641.2018.03.014

Influence of dipolar magnetic interaction on the LDGMI effect of Fe-based nanocrystalline ribbons

doi: 10.3969/j.issn.1000-5641.2018.03.014
  • Received Date: 2017-04-20
  • Publish Date: 2018-05-25
  • In this paper, the hysteresis loops, LDGMI (longitudinal driven giant magnetoimpedance) effect, and impedance phase variations of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline ribbons are investigated. The results show that the anisotropy field and the platform width of the LDGMI curves increase linearly with the number of nanocrystalline ribbons. This stems from the dipole-dipole interactions between the ribbons. Simultaneously, the "platform" width was modulated by the frequency and intensity of the driven field, the broad field amplified with the frequency of the driven field increasing, and gradually decreased with the intensity of driven field increasing. Hence, the work has important reference value for the development of LDGMI devices with multiple cores.
  • loading
  • [1]
    TAN K J, TAKASHI K, KIYOSHI Y, et al. Detection of high frequency magnetic fields by a GMI probe[J]. IEEE Transaction on Magnetics, 2006, 42(10):3329-3331. doi:  10.1109/TMAG.2006.879627
    [2]
    BLANC-BEGUIN F, NABILY S, GIERALTOWSKI J, et al. Cytotoxicity and GMI biosensor detection of maghemite nanoparticles internalized into cells[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(3):192-197. doi:  10.1016/j.jmmm.2008.08.104
    [3]
    SOO S Y, PRATAP K, DONG Y K, et al. Magnetic sensor system using asymmetric giant magneto-impedance head[J]. IEEE Transaction on Magnetics, 2009, 45(6):2727-2729. doi:  10.1109/TMAG.2009.2020538
    [4]
    杨介信, 杨燮龙, 陈国, 等.一种新型的纵向驱动巨磁阻抗效应[J].科学通报, 1998, 43(10):1051-1053. doi:  10.3321/j.issn:0023-074X.1998.10.008
    [5]
    ZHAO W, BU X Z, YU G L, et al. Feedback-type giant magneto-impedance sensor based on longitudinal excitation[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(19):3073-3077. doi:  10.1016/j.jmmm.2012.05.004
    [6]
    WU Z M, ZHAO Z J, LIU L P, et al. A new frequency-modulation-type MI sensor[J]. IEEE Transaction on Magnetics, 2005, 41(10):3694-3696. doi:  10.1109/TMAG.2005.854808
    [7]
    YU G L, BU X Z, XIANG C, et al. Design of a GMI magnetic sensor based on longitudinal excitation[J]. Sensor Actuators A-Physical, 2010, 161(1/2):72-77. https://www.sciencedirect.com/science/article/pii/S0924424710002323
    [8]
    YU G L, BU X Z, YANG B, et al. Differential-type GMI magnetic sensor based on longitudinal excitation[J]. IEEE Sensors Journal, 2011, 11(10):2273-2278. doi:  10.1109/JSEN.2011.2134084
    [9]
    MOHRI K, PANINA I V, UCHIYAMA T, et al. Sensitive and quick response macro-magnetic sensor utilizing magnetic impedance in Co-rich amorphous wire[J]. IEEE Transaction on Magnetics, 1995, 31(2):1266-1275. doi:  10.1109/20.364817
    [10]
    杨燮龙, 杨介信, 陈国, 等. Fe基软磁纳米微晶磁致电阻抗效应的研究[J].科学通报, 1997, 42(3):257-259. http://www.oalib.com/paper/4283981
    [11]
    WANG Z C, GONG F F, YANG X L, et al. Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons[J]. Journal of Applied Physics, 2000, 87(9):4819-4821. doi:  10.1063/1.373170
    [12]
    PAL S K, MANIK N B, MITRA A. Dependence of frequency and amplitude of the ac current on the GMI properties of Co based amorphous wires[J]. Materials Science and Engineering, 2006, 415(1/2):195-201.
    [13]
    SAMPAIO L C, SINNECKER E H C P, CERNICCHIARO G R C, et al. Magnetic microwires as macrospins in a long-range dipole-dipole interaction[J]. Physical Review B, 2000, 61(13):8976-8983. doi:  10.1103/PhysRevB.61.8976
    [14]
    ZHANG S L, CHAI Y S, FANG D Q, et al. Giant magneto-impedance effect of two paralleled amorphous microwires[J]. Rare Metals, 2016, 35(4):344-348. doi:  10.1007/s12598-013-0212-0
    [15]
    ASLIBEIKI B, KAMELI P, SALAMATI H. The effect of dipole-dipole interactions on coercivity, anisotropy constant and blocking temperature of MnFe2O4 nanoparticles[J/OL]. Journal of Applied Physics, 2016, 119(6): 063901(2016-02-14)[2017-02-01]. http://dx.doi.org/10.1063/1.4941388.
    [16]
    FAN J, WU J, NING N, et al. Magnetic dynamic interaction in amorphous micro wire array[J]. IEEE Transaction on Magnetics, 2010, 46(6):2431-2434. doi:  10.1109/TMAG.2010.2044378
    [17]
    PHAN M H, YU S C, CHUNG J S, et al. Magnetic characteristics and frequency dependence of permeability in Fe-B-N thin films[J]. Journal of Applied Physics, 2003, 93(12):9913-9915. doi:  10.1063/1.1579551
    [18]
    PHAN M H, PENG H X, YU S C, et al. Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires[J]. Journal of Magnetism and Magnetic Materials, 2007, 316(2):e253-e256. doi:  10.1016/j.jmmm.2007.02.112
    [19]
    YANG X L, YANG J X, CHEN G, et al. Magneto-impedance effect in field and stress-annealed Fe-based nanocrystalline alloys[J]. Journal of Magnetism and Magnetic Materials, 1997, 175(3):285-289. doi:  10.1016/S0304-8853(97)00210-2
    [20]
    RODIONOVA V, KUDINOV N, ZHUKOV A, et al. Interaction of bistable glass-coated microwires in different positional relationship[J]. Physica B:Condensed Matter, 2012, 407(9):1438-1441. doi:  10.1016/j.physb.2011.09.043
    [21]
    何济洲, 缪贵玲.两个磁偶极子间的相互作用[J].南昌大学学报, 1996, 18(3):96-98. http://www.docin.com/p-723470992.html
    [22]
    易建宏, 李丽娅, 彭元东.微波场作用下非晶合金Fe73.5Cu1Nb3Si13.5B9的纳米晶化[J].材料研究学报, 2007, 21(6):632-636.
    [23]
    王宗篪, 杨燮龙, 宫峰飞, 等.纵向驱动巨磁阻抗效应的相位特性[J].华东师范大学学报(自然科学版), 2000(2):49-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hdsz200002007&dbname=CJFD&dbcode=CJFQ
    [24]
    AMALOUA F, GIJS M A M. Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons[J]. Applied Physics Letters, 2002, 81(9):1654-1656. doi:  10.1063/1.1499769
    [25]
    林宏, 袁望治, 赵振杰. FeCuNbSiB多层膜的磁特性和巨磁阻抗效应[J].功能材料与器件学报, 2007, 13(6):666-670. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1073196
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views (232) PDF downloads(264) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return