中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 6
Dec.  2018
Turn off MathJax
Article Contents
XU Yi-wen, HAN Jing, HE Yan, HUANG Min-sheng. A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes[J]. Journal of East China Normal University (Natural Sciences), 2018, (6): 74-80. doi: 10.3969/j.issn.1000-5641.2018.06.009
Citation: XU Yi-wen, HAN Jing, HE Yan, HUANG Min-sheng. A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes[J]. Journal of East China Normal University (Natural Sciences), 2018, (6): 74-80. doi: 10.3969/j.issn.1000-5641.2018.06.009

A review of the effect of endogenous sulfur on the environmental behavior of phosphorus in sediment from polluted rivers and lakes

doi: 10.3969/j.issn.1000-5641.2018.06.009
  • Received Date: 2018-06-20
  • Publish Date: 2018-11-25
  • Sulfur and phosphorus are important elements in the geochemical cycle. Both their environmental behavior and their coupled relationship are intertwined to regulate the release of endogenous pollution from sediment in polluted rivers and lakes. This paper summarizes the environmental behavior of sulfur and phosphorous as well as the latest research progress on their coupling mechanisms. The study also notes that sulfur-driven eutrophication is an important type of water eutrophication in polluted rivers and lakes. Lastly, we discuss future perspectives on related research in terms of coupled S-cycling with other biogeochemical cycles, which can provide referential significance for the treatment of endogenous pollution in polluted rivers and lakes.
  • loading
  • [1]
    尹洪斌.太湖沉积物形态硫赋存及其与重金属和营养盐关系研究[D].南京: 中国科学院南京地理与湖泊研究所, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1615636
    [2]
    BALDWIN D S, MITCHELL A. Impact of sulfate pollution on anaerobic biogeochemical cycles in a wetland sediment[J]. Water Research, 2012, 46(4):965-974. doi:  10.1016/j.watres.2011.11.065
    [3]
    CARACO N F, COLE J J, LIKENS G E. Sulfate control of phosphorus availability in lakes:A test and re-evaluation of Hasler and Einsele's model[J]. Hydrobiologia, 1993, 253(1/2/3):275-280. doi:  10.1007/BF00050748
    [4]
    ROZAN T F, TAILLEFERT M, TROUWBORST R E, et al. Iron-sulfur-phosphorus cycling in the sediments of a shallow coastal bay:Implications for sediment nutrient release and benthic macroalgal blooms[J]. Limnol Oceanogr, 2002, 47(5):1346-1354. doi:  10.4319/lo.2002.47.5.1346
    [5]
    杨海全, 陈敬安, 刘文, 等.草海沉积物营养元素分布特征与控制因素[J].地球与环境, 2016, 44(3):297-303. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201603003
    [6]
    张璐.胶州湾沉积物中硫酸盐还原和铁异化还原的影响因素研究[D].山东青岛: 中国海洋大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10423-1014368346.htm
    [7]
    MYRBO A, SWAIN E B, ENGSTROM D R, et al. Sulfide generated by sulfate reduction is a primary controller of the occurrence of wild rice (Zizania palustris) in shallow aquatic ecosystems[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2736-2753[2018-05-13]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003787.
    [8]
    POLLMAN C D, SWAIN E B, BAEL D, et al. The evolution of sulfide in shallow aquatic ecosystem sediments-An analysis of the roles of sulfate, organic carbon, iron and feedback constraints using structural equation modeling[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2719-2735[2018-05-13]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003785.
    [9]
    STAGG C L, SCHOOLMASTER D R, KRAUSS K W, et al. Causal mechanisms of soil organic matter decomposition:Deconstructing salinity and flooding impacts in coastal wetlands[J]. Ecology, 2017, 98(8):2003-2018. doi:  10.1002/ecy.1890
    [10]
    JOHNSON N W, MITCHELL C P, ENGSTROM D R, et al. Methylmercury production in a chronically sulfate-impacted sub-boreal wetland[J]. Environmental Science:Processes & Impacts, 2016, 18(6):725-734. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8edd811d83badd6758ea97da14dbba27
    [11]
    COLEMAN WASIK J K, ENGSTROM D R, MITCHELL C P J, et al. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland[J]. Journal of Geophysical Research:Biogeosciences, 2015, 120(9):1697-1715. doi:  10.1002/2015JG002993
    [12]
    REN L, SONG X Y, JEPPESEN E, et al. Contrasting patterns of freshwater microbial metabolic potentials and functional gene interactions between an acidic mining lake and a weakly alkaline lake[J]. Limnology and Oceanography, 2018, 63:S354-S366. doi:  10.1002/lno.10744/full
    [13]
    WANG P, BENOIT G. Modeling the biogeochemical role of photosynthetic sulfur bacteria in phosphorus cycling in a managed eutrophic lake[J]. Ecological Modelling, 2017, 361:66-73. doi:  10.1016/j.ecolmodel.2017.05.016
    [14]
    ZHANG W, JIN X, LIU D, et al. Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients[J]. Environ Sci Pollut Res Int, 2017, 24(23):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=00676bff08d64f061bb45b008eff7891
    [15]
    ZHU M X, HAO X C, SHI X N, et al. Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf[J]. Applied Geochemistry, 2012, 27(4):892-905. doi:  10.1016/j.apgeochem.2012.01.004
    [16]
    YU F, ZOU J, HUA Y, et al. Transformation of external sulphate and its effect on phosphorus mobilization in Lake Moshui, Wuhan, China[J]. Chemosphere, 2015(138):398-404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=14f27ac3b5a2e4995486b3af42e3ca9e
    [17]
    安文超.南四湖及主要入湖河口沉积物的污染特征及磷吸附释放研究[D].济南: 山东大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10422-2008192275.htm
    [18]
    朱瑾灿, 吴雨琛, 尹洪斌.太湖蓝藻聚集区沉积物硫形态的时空变异特征[J].中国环境科学, 2017, 37(12):4690-4700. doi:  10.3969/j.issn.1000-6923.2017.12.035
    [19]
    叶焰焰.罗源湾滨海湿地沉积物中还原性无机硫的分布特征及影响研究[D].武汉: 中国地质大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017136469.htm
    [20]
    段勋, 罗敏, 黄佳芳, 等.闽江河口潮滩沼泽湿地沉积物铁的形态和空间分布[J].环境科学学报, 2017, 37(10):3780-3791. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201710020
    [21]
    JULIAN P, CHAMBERS R, RUSSELL T. Iron and pyritization in wetland soils of the Florida Coastal Everglades[J]. Estuaries and Coasts, 2017, 40(3):822-831. doi:  10.1007/s12237-016-0180-3
    [22]
    ZHU J, HE Y, ZHU Y S, et al. Biogeochemical sulfur cycling coupling with dissimilatory nitrate reduction processes in freshwater sediments[J]. Environmental Reviews, 2018, 26(2):121-132. doi:  10.1139/er-2017-0047
    [23]
    孙韶玲, 盛彦清, 孙瑞川, 等.河流水体黑臭演化过程及恶臭硫化物的产生机制[J].环境科学与技术, 2018, 41(3):15-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FJKS201803004&dbname=CJFD&dbcode=CJFQ
    [24]
    BAO P, LI G X, SUN G X. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of the Total Environment, 2017, 613/614:398-408. http://www.ncbi.nlm.nih.gov/pubmed/28918271
    [25]
    ELLER G, KANEL L K, KRUGER M. Cooccurrence of aerobic and anaerobic methane oxidation in the water column of Lake Plusssee[J]. Applied and Environmental Microbiology, 2005, 71(12):8925-8928. doi:  10.1128/AEM.71.12.8925-8928.2005
    [26]
    LOY A, DULLER S, BARANYI C, et al. Reverse dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing prokaryotes[J]. Environmental Microbiology, 2010, 11(2):289-299. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2702494
    [27]
    郭晨辉, 李和祥, 方芳, 等.钼锑抗分光光度法对黄河表层沉积物中磷的形态分布及其吸附-解吸特征研究[J].光谱学与光谱分析, 2018, 38(1):218-223. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=GUAN201801047&dbname=CJFD&dbcode=CJFQ
    [28]
    ZHU J, HE Y, WANG J H, et al. Impact of aeration disturbances on endogenous phosphorus fractions and their algae growth potential from malodorous river sediment[J]. Environ Sci Pollut Res, 2017, 24:8062-8070. doi:  10.1007/s11356-017-8471-1
    [29]
    王敬富, 陈敬安, 罗婧, 等.红枫湖沉积物内源磷释放通量估算方法的对比研究[J].地球与环境, 2018, 46(1):1-6. http://d.old.wanfangdata.com.cn/Periodical/dzdqhx201801001
    [30]
    DING S, YAN W, DAN W, et al. In situ, high-resolution evidence for iron-coupled mobilization of phosphorus in sediments[J]. Sci Rep, 2016, 6(1):24341. doi:  10.1038/srep24341
    [31]
    RYDIN E. Potentially mobile phosphorus in lake Erken sediment[J]. Water Research, 2000, 34(7):2037-2042. doi:  10.1016/S0043-1354(99)00375-9
    [32]
    JING L, LIU X, BAI S, et al. Effects of sediment dredging on internal phosphorus:A comparative field study focused on iron and phosphorus forms in sediments[J]. Ecological Engineering, 2015(82):267-271. http://www.sciencedirect.com/science/article/pii/S0925857415300070
    [33]
    HANSEL C M, LENTINI C J, TANG Y, et al. Dominance of sulfur-fueled iron oxide reduction in low-sulfate freshwater sediments[J]. Isme Journal, 2015, 9(11):2400. doi:  10.1038/ismej.2015.50
    [34]
    CESBRON F, METZGER E, LAUNEAU P, et al. Simultaneous 2D imaging of dissolved iron and reactive phosphorus in sediment porewaters by thin-film and hyperspectral methods[J]. Environmental Science & Technology, 2014, 48(5):2816-2826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=43cc2e059c155533e3fa1a6e93f45b1b
    [35]
    杨宏伟, 杨小红, 韩明梅.黄河表层沉积物中磷形态分布与释放风险[J].环境化学, 2016, 35(2):403-410. http://d.old.wanfangdata.com.cn/Periodical/hjhx201602022
    [36]
    XIANG S, NIE F, WU D, et al. Nitrogen distribution and diffusive fluxes in sediment interstitial water of Poyang Lake[J]. Environmental Earth Sciences, 2015, 74(3):2609-2615. doi:  10.1007/s12665-015-4281-2
    [37]
    杨斌, 王婷, 王坤, 等.一种改进的磷形态连续提取方法[J].环境科学与技术, 2017, 40(9):90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017111600006800
    [38]
    WANG J, CHEN J, DING S, et al.Effects of seasonal hypoxia on the release of phosphorus from sediments in deep-water ecosystem:a case study in Hongfeng lake, Southwest China[J]. Environ Pollut, 2016, 219:258-265. http://www.sciencedirect.com/science/article/pii/S0269749116306947
    [39]
    HUANG L, FANG H, HE G, et al. Effects of internal loading on phosphorus distribution in the Taihu Lake driven by wind waves and lake currents[J]. Environ Pollut, 2016, 219:760-773. doi:  10.1016/j.envpol.2016.07.049
    [40]
    JIAN L, JUNYI Y, JINGCHUN L, et al. The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere[J]. Marine Pollution Bulletin, 2016, 114(2):733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=401896ef7bd29720407ff82a1b539404
    [41]
    MYRBO A, SWAIN E B, JOHNSON N W, et al. Increase in Nutrients, Mercury, and Methylmercury as a Consequence of Elevated Sulfate Reduction to Sulfide in Experimental Wetland Mesocosms[J/OL]. Journal of Geophysical Research: Biogeosciences, 2017, 122(11): 2769-2785[2018-05-15]. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017JG003788.
    [42]
    GEURTS J J M, SARNEEL J M, WILLERS B J C, et al. Interacting effects of sulphate pollution, sulphide toxicity and eutrophication on vegetation development in fens:A mesocosm experiment[J]. Environmental Pollution, 2009, 157:2072-2081. doi:  10.1016/j.envpol.2009.02.024
    [43]
    LAMERS L P M, FALLA S J, SAMBORSKA E M, et al. Factors controlling the extent of eutrophication and toxicity in sulfate-polluted freshwater wetlands[J]. Limnology and Oceanography, 2002, 47:585-593. doi:  10.4319/lo.2002.47.2.0585
    [44]
    WELLE M, SMOLDERS A, CAMP H, et al. Biogeochemical interactions between iron and sulphate in freshwater wetlands and their implications for interspecific competition between aquatic macrophytes[J]. Freshwater Biology, 2007, 52, 434-447. doi:  10.1111/fwb.2007.52.issue-3
    [45]
    WESTON N B, VILE M A, NEUBAUER S C, et al. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils[J]. Biogeochemistry, 2011, 102:135-151. doi:  10.1007/s10533-010-9427-4
    [46]
    龚梦丹, 金增锋, 王燕, 等.长江中下游典型浅水湖泊沉积物水界面磷与铁的耦合关系[J].湖泊科学, 2017, 29(5):1103-1111. http://d.old.wanfangdata.com.cn/Periodical/hpkx201705008
    [47]
    WANG J F, CHEN J A, GUO J Y, et al. Combined Fe/P and Fe/S ratios as a practicable index for estimating the release potential of internal-P in freshwater sediment[J]. Environmental Science and Pollution Research, 2018, 25:10740-10751. doi:  10.1007/s11356-018-1373-z
    [48]
    HOFFMANN C C, HEIBERG L, AUDET J, et al. Low phosphorus release but high nitrogen removal in two restored riparian wetlands inundated with agricultural drainage water[J]. Ecological Engineering, 2012, 46:75-87. doi:  10.1016/j.ecoleng.2012.04.039
    [49]
    JIN X D, HE Y L, KIRUMBA G, et al. Phosphorus fractions and phosphate sorption-release characteristics of the sediment in the Yangtze River estuary reservoir[J]. Ecological Engineering, 2013, 55:62-66. doi:  10.1016/j.ecoleng.2013.02.001
    [50]
    KENNETT D M, HARGRAVES P E. Benthic diatoms and sulfide fluctuations:Upper basin of Pettaquamscutt River, Rhode Island[J]. Estuarine, Coastal and Shelf Science, 1985, 21(4):577-586. doi:  10.1016/0272-7714(85)90058-7
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article views (122) PDF downloads(148) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return