中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2019
Turn off MathJax
Article Contents
LI Shi-hua, XIE Li-na, CHEN Wei, FEI Bei-li, YUAN Lin, GE Zhen-ming. Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 144-155. doi: 10.3969/j.issn.1000-5641.2019.01.016
Citation: LI Shi-hua, XIE Li-na, CHEN Wei, FEI Bei-li, YUAN Lin, GE Zhen-ming. Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions[J]. Journal of East China Normal University (Natural Sciences), 2019, (1): 144-155. doi: 10.3969/j.issn.1000-5641.2019.01.016

Comparison of growth and photosynthesis characteristics of native and exotic salt marsh vegetation under elevated temperature and waterlogging conditions

doi: 10.3969/j.issn.1000-5641.2019.01.016
  • Received Date: 2017-11-29
  • Publish Date: 2019-01-25
  • Growth and photosynthesis characteristics of native Phragmites australis and exotic Spartina alterniflora, the dominant salt marsh species in China's coastline, grown under elevated temperature and waterlogging conditions, were investigated. The results showed that elevated temperature increased the shoot height, leaf area, maximum rate of photosynthesis, and the apparent quantum yield of P. australis under non-waterlogging (Non-W) and shallow-waterlogging (S-W) conditions. However, the effect was negligible for the growth and photosynthesis parameters of P. australis in deep-waterlogging (D-W) conditions. The shoot height of P. australis reached a maximum, but the leaf area was lowest in a D-W state, indicating morphological adaption to waterlogging. D-W conditions significantly decreased the photosynthesis and chlorophyll fluorescence parameters of P. australis during the middle and later growth periods, compared to Non-W and S-W conditions. Both temperature elevation and waterlogging increased the growth, photosynthesis and chlorophyll fluorescence parameters of S. alterniflora, and the degree of increase under elevated temperature was greater than that of P. australis. Differences in growth and photosynthesis of S. alterniflora between the waterlogging treatments were not notable throughout the growing period. Analysis of variance showed that the effect of elevated temperature on the eco-physiological characters of P. australis was season-dependent, and the impact of waterlogging treatment was more notable with some interaction between the treatments. The effect of temperature elevation on photosynthesis parameters of S. alterniflora was notable, but not for the waterlogging treatment. We suggest that anticipated climate warming and rises in sea level might be beneficial to the exotic marsh species.
  • loading
  • [1]
    MILLENNIUM ECOSYSTEM ASSESSMENT. Ecosystems and Human Well-being:Wetlands and Water Synthesis[M]. Washington DC:World Resources Institute, 2005.
    [2]
    KIRWAN M L, MEGONIGAL J P. Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature, 2013, 504(7478):53-60. doi:  10.1038/nature12856
    [3]
    STOCKER T F, QIN D, PLATTNER G K, et al. The Physical Science Basis[R]//Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, 2013:159-254. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1312.6936
    [4]
    CHURCH J A, CLARK P U, CAZENAVE A, et al. Sea-level rise by 2100[J]. Science, 2013, 342(6165):1445. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3107304
    [5]
    ZUO P, ZHAO S, LIU C A, et al. Distribution of Spartina spp. along China's coast[J]. Ecological Engineering, 2012, 40:160-166. doi:  10.1016/j.ecoleng.2011.12.014
    [6]
    关道明.中国滨海湿地[M].北京:海洋出版社, 2012.
    [7]
    GE Z M, ZHANG L Q, LIN Y. Spatiotemporal dynamics of salt marsh vegetation regulated by plant invasion and abiotic processes in the Yangtze Estuary:observations with a modeling approach[J]. Estuaries & Coasts, 2015, 38(1):310-324. doi:  10.1007/s12237-014-9804-7
    [8]
    LI B, LIAO C H, ZHANG X D, et al. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects[J]. Ecological Engineering, 2009, 35(4):511-520. https://www.sciencedirect.com/science/article/abs/pii/S0925857408001109
    [9]
    CLELAND E E, CHIARIELLO N R, LOARIE S R, et al. Diverse responses of phenology to global changes in a grassland ecosystem[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(37):13740-13744. doi:  10.1073/pnas.0600815103
    [10]
    RUSTAD L E, CAMPBELL J L, MARION G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4):543-562. doi:  10.1007/s004420000544
    [11]
    祁秋艳, 杨淑慧, 仲启铖, 等.崇明东滩芦苇光合特征对模拟增温的响应[J].华东师范大学学报(自然科学版), 2012, 2012(6):29-38. doi:  10.3969/j.issn.1000-5641.2012.06.004
    [12]
    MORRIS J T, SUNDARESHWAR P V, NIETCH C T, et al. Responses of coastal wetlands to rising sea level[J]. Ecology, 2002, 83(10):2869-2877. doi:  10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2
    [13]
    KOPPITZ H. Effects of flooding on the amino acid and carbohydrate patterns of Phragmites australis[J]. Limnologica, 2004, 34(1):37-47. https://www.sciencedirect.com/science/article/pii/S0075951104800203
    [14]
    MAUCHAMP A, METHY M. Submergence-induced damage of photosynthetic appá ratus in Phragmites australis[J]. Environmental & Experimental Botany, 2004, 51(3):227-235.
    [15]
    GLAZ B, MORRIS D R, DAROUB S H. Sugarcane photosynthesis, transpiration, and stomatal conductance due to flooding and water table[J]. Crop Science, 2004, 44(5):1633-1641. doi:  10.2135/cropsci2004.1633
    [16]
    仲启铖, 王江涛, 周剑虹, 等.水位调控对崇明东滩围垦区滩涂湿地芦苇和白茅光合、形态及生长的影响[J].应用生态学报, 2014, 25(2):408-418. http://d.old.wanfangdata.com.cn/Periodical/yystxb201402015
    [17]
    潘澜, 薛立.植物淹水胁迫的生理学机制研究进展[J].生态学杂志, 2012, 31(10):2662-2672. http://d.old.wanfangdata.com.cn/Periodical/stxzz201210035
    [18]
    刘瑞仙, 靖元孝, 肖林, 等.淹水深度对互叶白千层幼苗气体交换、叶绿素荧光和生长的影响[J].生态学报, 2010, 30(19):5113-5120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CAS201303040000630170
    [19]
    CANNELL M G R, THORNLEY J H M. Temperature and CO2 responses of leaf and canopy photosynthesis:a clarification using the non-rectangular hyperbola model of photosynthesis[J]. Annals of Botany, 1998, 82(6):883-892. doi:  10.1006/anbo.1998.0777
    [20]
    EVANS J R, JAKOBSEN I, ÖGREN E. Photosynthetic light-response curves:2. Gradients of light absorption and photosynthetic capacity[J]. Planta, 1993, 189(2):191-200. doi:  10.1007-BF00195076/
    [21]
    MAXWELL K, JOHNSON G N. Chlorophyll fluorescence-a practical guide[J]. Journal of Experimental Botany, 2000, 51(345):659-668. doi:  10.1093/jexbot/51.345.659
    [22]
    ENGELS J G, KAI J. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient[J]. Oikos, 2010, 119(4):679-685. doi:  10.1111/j.1600-0706.2009.17940.x
    [23]
    DUNNE J A, HARTE J, TAYLOR K J. Subalpine meadow flowering phenology responses to climate change:integrating experimental and gradient methods[J]. Ecological Monographs, 2003, 73(1):69-86. doi:  10.1890/0012-9615(2003)073[0069:SMFPRT]2.0.CO;2
    [24]
    NIU S, LI Z, XIA J, et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China[J]. Environmental & Experimental Botany, 2008, 63(1):91-101. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0dbae3afdb0ddda7fa99903b0e45bbe2
    [25]
    LOIK M E, REDAR S P, HARTE J. Photosynthetic responses to a climate-warming manipulation for contrasting meadow species in the Rocky Mountains, Colorado, USA[J]. Functional Ecology, 2000, 14(2):166-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=be4d843179b03c5dc44afcbe8e902b3e
    [26]
    SANDVIK S M, HEEGAARD E, ELVEN R, et al. Responses of alpine snowbed vegetation to long-term experimental warming[J]. Ecoscience, 2004, 11(2):150-159. doi:  10.1080/11956860.2004.11682819
    [27]
    王琼, 唐娅, 谢涛, 等.入侵植物喜旱莲子草和本地种接骨草光合生理特征对增温响应的差异[J].生态学报, 2017, 37(3):770-777. http://d.old.wanfangdata.com.cn/Periodical/stxb201703006
    [28]
    LIMA A L S, DAMATTA F M, PINHEIRO H A, et al. Photochemical responses and oxidative stress in two clones of Coffea canephora under water deficit conditions[J]. Environmental & Experimental Botany, 2002, 47(3):239-247. doi:  10.1016-S0098-8472(01)00130-7/
    [29]
    BRADLEY B A, BLUMENTHAL D M, WILCOVE D S, et al. Predicting plant invasions in an era of global change[J]. Trends in Ecology & Evolution, 2010, 25(5):310-318. doi:  10.1016-j.tree.2009.12.003/
    [30]
    SAGE R, KUBIEN D. The temperature responses of C3 and C4 photosynthesis[J]. Plant, Cell and Environment, 2007, 30:1086-1106. doi:  10.1111/pce.2007.30.issue-9
    [31]
    KIRSCHBAUM M U. Direct and indirect climate change effects on photosynthesis and transpiration[J]. Plant Biology, 2004, 6(3):242-253. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e1c657f87df43e064203a333640314bb
    [32]
    GE Z M, WANG H, CAO H B, et al. Responses of eastern Chinese coastal salt marshes to sea-level rise combined with vegetative and sedimentary processes[J]. Scientific Reports, 2016(6):28466. https://www.nature.com/articles/srep28466
    [33]
    AMSBERRY L, BAKER M A, EWANCHUK P J, et al. Clonal integration and the expansion of Phragmites australis[J]. Ecological Applications, 2000, 10(4):1110-1118. doi:  10.1890/1051-0761(2000)010[1110:CIATEO]2.0.CO;2
    [34]
    刘泽彬, 程瑞梅, 肖文发, 等.淹水对三峡库区消落带香附子生长及光合特性的影响[J].生态学杂志, 2013, 32(8):2015-2022. http://d.old.wanfangdata.com.cn/Periodical/stxzz201308010
    [35]
    CHEN X, PIERIK R, PEETERS A J M, et al. Endogenous abscisic acid as a key switch for natural variation in flooding-induced shoot elongation[J]. Plant Physiology, 2010, 154(2):969-977. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2949041
    [36]
    VOESENEK L A, RIJNDERS J H, PEETERS A J, et al. Plant hormones regulate fast shoot elongation under water:From genes to communities[J]. Ecology, 2004, 85(1):16-27. https://academic.oup.com/aobpla
    [37]
    MANZUR M E, GRIMOLDI A A, INSAUSTI P, et al. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence[J]. Annals of Botany, 2009, 104(6):1163-1169. doi:  10.1093/aob/mcp203
    [38]
    ASHRAF M, ARFAN M. Gas exchange characteristics and water relations in two cultivars of Hibiscus esculentus under waterlogging[J]. Biologia Plantarum, 2005, 49(3):459-462. doi:  10.1007/s10535-005-0029-2
    [39]
    MIELKE, MATOS M S, COUTO E M, et al. Some photosynthetic and growth responses of Annona glabra L. seedlings to soil flooding[J]. Acta Botanica Brasilica, 2005, 19(4):264-265. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000002621146
    [40]
    MALIK A I, COLMER T D, LAMBERS H, et al. Changes in physiological and morphological traits of roots and shoots of wheat in response to different depths of waterlogging[J]. Australian Journal of Plant Physiology, 2001, 28(11):1121-1131.
    [41]
    CHEN H, QUALLS R G, BLANK R R. Effect of soil flooding on photosynthesis, carbohydrate partitioning and nutrient uptake in the invasive exotic Lepidium latifolium[J]. Aquatic Botany, 2005, 82(4):250-268. doi:  10.1016/j.aquabot.2005.02.013
    [42]
    VOSS C M, CHRISTIAN R R, MORRIS J T. Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes[J]. Marine Biology, 2013, 160(1):181-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3f4cb88e6b46fddcad09a2d185aa1b9d
    [43]
    NAIDOO G, MCKEE K L, MENDELSSOHN I A. Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae)[J]. American Journal of Botany, 1992, 79(7):765-770. doi:  10.1002/j.1537-2197.1992.tb13652.x
    [44]
    孙宝玉, 韩广轩, 陈亮, 等.短期模拟增温对黄河三角洲滨海湿地芦苇光响应特征的影响[J].生态学报, 2018, 38(1):167-176. http://d.old.wanfangdata.com.cn/Periodical/stxb201801017
    [45]
    DWYER S A, GHANNOUM O, NICOTRA A, et al. High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry[J]. Plant Cell & Environment, 2007, 30(1):53-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3aafec272e16ce59e021604336fea17a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article views (115) PDF downloads(180) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return