中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2020
Turn off MathJax
Article Contents
YE Jianchun, ZHOU Lizhao, LI Wenwu, OU-YANG Wei. Novel polymer semiconductor films and related field effect transistor devices[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 83-92. doi: 10.3969/j.issn.1000-5641.201922006
Citation: YE Jianchun, ZHOU Lizhao, LI Wenwu, OU-YANG Wei. Novel polymer semiconductor films and related field effect transistor devices[J]. Journal of East China Normal University (Natural Sciences), 2020, (1): 83-92. doi: 10.3969/j.issn.1000-5641.201922006

Novel polymer semiconductor films and related field effect transistor devices

doi: 10.3969/j.issn.1000-5641.201922006
  • Received Date: 2019-03-19
    Available Online: 2019-12-25
  • Publish Date: 2020-01-01
  • Thin films using a novel organic polymer semiconductor (DPPTTT(poly(3,6-di(2-thien-5-yl)-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione) thieno [3,2-b] thiophene)) were prepared by a solution process and characterized through different techniques. It was found that the thickness, surface roughness, and Raman peak strength of the semiconductor films changed with the solution concentration and rotation rate. The polymer semiconductor was used to prepare the active layer for p-type organic field effect transistors; with these, the influence of channel length on critical transistor parameters (i.e., carrier mobility and threshold voltage) was studied. It was found that the effective carrier mobility was the highest at 0.12 cm2/Vs when the channel length was reduced to 50 μm. With a decrease in channel length, both carrier mobility and threshold voltage tended to increase, which was contrary to the short channel effect. This paper may provide new perspectives for better understanding the physics of field effect transistor devices.
  • loading
  • [1]
    OU-YANG W, WEIS M, LEE K,et al. Function of interfacial dipole monolayer in organic field effect transistors [J]. Japanese Journal of Applied Physics, 2011, 50(4S): 04DK10-6. DOI:  10.7567/JJAP.50.04DK10.
    [2]
    CHEN M, ZHU Y N,YAO C,et al. Intrinsic charge carrier mobility in single-crystal OFET by “fast trapping vs. slow detrapping” model [J]. Organic Electronics, 2018, 54: 237-244. DOI:  10.1016/j.orgel.2017.12.042.
    [3]
    JI J J, ZHOU D G,TANG Y,et al. Partially removing long branched alkyl side chains of regioregular conjugated backbone based diketopyrrolopyrrole polymer for improving field-effect mobility [J]. Journal of Materials Chemistry C, 2018, 6: 13325-13330. DOI:  10.1039/C8TC04954H.
    [4]
    OU-YANG W, WEIS M,TAGUCHI D,et al. Modeling of threshold voltage in pentacene organic field-effect transistors [J]. Journal of Applied Physics, 2010, 107(12): 124506. DOI:  10.1063/1.3449078.
    [5]
    WANG R, GUO Y K,ZHANG D,et al. Improved electron transport with reduced contact resistance in N-doped polymer field-effect transistors with a dimeric dopant [J]. Macromol. Rapid Commun, 2018, 39(14): 1700726. DOI:  10.1002/marc.201700726.
    [6]
    TEIXEIRA DA ROCHA C, HAASE K,ZHENG Y C,et al. Solution Coating of Small Molecule/Polymer Blends Enabling Ultralow Voltage and High-Mobility Organic Transistors [J]. Adv Electron Mater, 2018, 4(8): 1800141. DOI:  10.1002/aelm.201800141.
    [7]
    OU-YANG W, WEIS M,MANAKA T,et al. Effect of an upward and downward interface dipole langmuir-blodgett monolayer on pentacene organic field-effect transistors: A comparison study [J]. Japanese Journal of Applied Physics, 2012, 51(2R): 024102-5. DOI:  10.7567/JJAP.51.024102.
    [8]
    THUAU D, ABBAS M, WANTZ G, et al. Mechanical strain induced changes in electrical characteristics of flexible, non-volatile ferroelectric OFET based memory [J]. Organic Electronics, 2017, 40: 30-35. DOI:  10.1016/j.orgel.2016.10.036.
    [9]
    GAO X, DUAN S M, LI J F,et al. Deposition rate related DPA OFET threshold voltage shift and hysteresis variation [J]. Journal of Materials Chemistry C, 2018, 6: 12498-12502. DOI:  10.1039/C8TC05327H.
    [10]
    NAKAYAMA K, OU-YANG W,UNO M,et al. Flexible air-stable three-dimensional polymer field-effect transistors with high output current density [J]. Organic Electronics, 2013, 14: 2908-2915. DOI:  10.1016/j.orgel.2013.08.002.
    [11]
    LI J, OU-YANG W, WEIS M, et al. Electric-field enhanced thermionic emission model for carrier injection mechanism of organic field-effect transistors: understanding of contact resistance [J]. Journal of Physics D : Applied Physics , 2017, 50(2): 035101. DOI:  10.1088/1361-6463/aa4e95.
    [12]
    UEMURA T, ROLIN C, KE T H, et al. On the extraction of charge carrier mobility in high-mobility organic transistors [J]. Advanced Materials, 2016, 28(1): 151-155. DOI:  10.1002/adma.201503133.
    [13]
    CHOI H H, CHO K, SIRRINGHAUS H, et al. Critical assessment of charge mobility extraction in FETs [J]. Nature materials, 2018, 17(1): 2-7. DOI:  10.1038/nmat5035.
    [14]
    NIKOLKA M, NASRALLAH I, ROSE B, et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives [J]. Nature Mater, 2017, 16: 356-361. DOI:  10.1038/nmat4785.
    [15]
    FARAJI S, DANESH E, TATE D J, et al. Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs) [J]. Journal of Physics D: Applied Physics, 2016, 49(18): 185102.
    [16]
    ZHANG W M, SMITH J, WATKINS S E, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors [J]. Journal of the American Chemical Society, 2010, 132(33): 11437-11439. DOI:  10.1021/ja1049324.
    [17]
    NIKOLKA M, SCHWEICHER G, ARMITAGE J, et al. Performance improvements in conjugated polymer devices by removal of water-induced traps [J]. Advanced Materials, 2018, 30(36): 1801874. DOI:  10.1002/adma.201801874.
    [18]
    LI Y N, SINGH S P, SONAR P. A high mobility P-type DPP-thieno[3,2-b]thiophene copolymer for organic thin-film transistors [J]. Advanced Materials, 2010, 22(43): 4862-4866. DOI:  10.1002/adma.201002313.
    [19]
    ZHOU N J, VEGIRAJU S, YU X G, et al. Diketopyrrolopyrrole (DPP) functionalized tetrathienothiophene (TTA) small molecules for organic thin film transistors and photovoltaic cells [J]. Journal of Materials Chemistry C, 2015, 3(34): 8932-8941. DOI:  10.1039/C5TC01348H.
    [20]
    LI Y N, SONAR P, MURPHY L, et al. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics [J]. Energy & Environmental Science, 2013, 6: 1684-1710. DOI:  10.1039/c3ee00015j.
    [21]
    COUTO R, CHAMBON S, AYMONIER C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly-(3-hexylthiophene) nanoparticles for OFET devices [J]. Chemical Communications, 2015, 51(6): 1008-1011. DOI:  10.1039/C4CC07878K.
    [22]
    CHIANESE F, CANDINI A, AFFRONTE M, et al. Linear conduction in N-type organic field effect transistors with nanometric channel lengths and graphene as electrodes [J]. Applied Physics Letters, 2018, 112(21): 213301. DOI:  10.1063/1.5023659.
    [23]
    VASIMALLA S, SUBBARAO N V V, GEDDA M, et al. Effects of dielectric material, HMDS layer, and channel length on the performance of the perylenediimide-based organic field-effect transistors [J]. ACS Omega, 2017, 2: 2552-2560. DOI:  10.1021/acsomega.7b00374.
    [24]
    LEOBANDUNG E, GU J, GUO L J,et al. Wire-channel and wrap-around-gate metal–oxide–semiconductor field-effect transistors with a significant reduction of short channel effects [J]. Journal of Vacuum Science Technology B: Microelectronics and Nanometer Structures, 1997, 15(6): 2791-2794. DOI:  10.1116/1.589729.
    [25]
    RAY B, MAHAPATRA S. Modeling of Channel Potential and Subthreshold Slope of Symmetric double-gate transistor [J]. IEEE Transactions on Electron Devices, 2009, 56(2): 260-264. DOI:  10.1109/TED.2008.2010577.
    [26]
    PRETET J, MONFRAY S, CRISTOLOVEANU S,et al. Silicon-on-nothing MOSFETs: Performance, short-channel effects, and backgate coupling [J]. IEEE Transactions on Electron Devices, 2004, 51(2): 240-244. DOI:  10.1109/TED.2003.822226.
    [27]
    HU Y Y, LI G D, CHEN Z J. The importance of contact resistance in high-mobility organic field-effect transistors studied by scanning kelvin probe microscopy [J]. IEEE Electron Device Letters, 2018, 39(2): 276-279. DOI:  10.1109/LED.2017.2781301.
    [28]
    CHOI S, FUENTES-HERNANDEZ C,WANG C Y,et al. A Study on reducing contact resistance in solution-processed organic field-effect transistors [J]. ACS Applied Material and Interfaces, 2016, 8(37): 24744-24752. DOI:  10.1021/acsami.6b07029.
    [29]
    WADA H, SHIBATA K, BANDO Y,et al. Contact resistance and electrode material dependence of air-stable n-channel organic field-effect transistors using dimethyldicyanoquinonediimine (DMDCNQI) [J]. Journal of Materials Chemistry, 2008, 18(35): 4165-4171. DOI:  10.1039/b808435a.
    [30]
    OU-YANG W, MANAKA T, NAITOU S,et al. Optical second-harmonic generation in hydrogenated amorphous silicon single- and double-junction solar cells [J]. Japanese Journal of Applied Physics , 2012, 51(7R): 070209-.
    [31]
    OU-YANG W, MITOMA N,KIZU T,et al. Controllable film densification and interface flatness for high-performance amorphous indium oxide based thin film transistors [J]. Applied Physics Letters, 2014, 105(16): 163503. DOI:  10.1063/1.4898815.
    [32]
    RAJEEV K P, OPOKU C,STOLOJAN V,et al. Effect of nanowire-dielectric interface on the hysteresis of solution processed silicon nanowire FETs [J]. Nanoscience and Nanoengineering, 2017, 5(2): 17-24. DOI:  10.13189/nn.2017.050201.
    [33]
    HEKMATSHOAR B. Thin-film silicon heterojunction FETs for large area and flexible electronics: Design parameters and reliability [J]. IEEE Transactions on Electron Devices, 2015, 62(11): 3524-3529. DOI:  11.1109/TED.2015.2463721.
    [34]
    GAO X, LIN M M,MAO B H,et al. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors [J]. Journal of Physics D: Applied Physics, 2017, 50(2): 025102. DOI:  10.1088/1361-6463/50/2/025102.
    [35]
    MITOMA N, AIKAWA S,OU-YANG W,et al. Dopant selection for control of charge carrier density and mobility in amorphous indium oxide thin-film transistors: Comparison between Si- and W-dopants [J]. Applied Physics Letters, 2015, 106(4): 042106. DOI:  10.1063/1.4907285.
    [36]
    LIN M F, GAO X, MITOMA N,et al. Reduction of the interfacial trap density of indium-oxide thin film transistors by incorporation of hafnium and annealing process [J]. AIP Advances, 2015, 5(1): 017116. DOI:  10.1063/1.4905903.
    [37]
    SALYK O, VYŇUCHAL J,HORÁČKOVÁ P,et al. Structure and Raman spectra of pyridyl substituted diketo-pyrrolo-pyrrole isomers and polymorphs [J]. Journal of Molecular Structure, 2010, 983(1/2/3): 39-47. DOI:  10.1016/j.molstruc.2010.08.026.
    [38]
    CALVO-CASTRO J, WARZECHA M,MCLEAN A J,et al. Impact of substituent effects on the Raman spectra of structurally related N-substituted diketopyrrolopyrroles [J]. Vibrational Spectroscopy, 2016, 83: 8-16. DOI:  10.1016/j.vibspec.2015.12.004.
    [39]
    YANG J W, FOSSUM J G. On the feasibility of nanoscale triple-gate CMOS transistors [J]. IEEE Transactions on Electron Devices, 2005, 52(6): 1159-1163. DOI:  10.1109/TED.2005.848109.
    [40]
    MATSUMOTO T, OU-YANG W,MIYAKE K,et al. Study of contact resistance of high-mobility organic transistors through comparison [J]. Organic Electronics, 2013, 14(10): 2590-2595. DOI:  10.1016/j.orgel.2013.06.032.
    [41]
    OU-YANG W, UEMURA T, MIYAKE K, et al. High-performance organic transistors with high-k dielectrics: A comparative study on solution-processed single crystals and vacuum-deposited polycrystalline films of 2,9-didecyl-dinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene [J]. Applied Physics Letters, 2012, 101(16): 223304. DOI:  10.1063/1.4769436.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (114) PDF downloads(1) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return