中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 2
Mar.  2020
Turn off MathJax
Article Contents
LIAO Yujiao, DONG Guangjiong. Optical dispersion of Bose-Einstein condensates[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 76-82. doi: 10.3969/j.issn.1000-5641.201922013
Citation: LIAO Yujiao, DONG Guangjiong. Optical dispersion of Bose-Einstein condensates[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 76-82. doi: 10.3969/j.issn.1000-5641.201922013

Optical dispersion of Bose-Einstein condensates

doi: 10.3969/j.issn.1000-5641.201922013
  • Received Date: 2019-05-06
  • Publish Date: 2020-03-01
  • Recent studies have shown that Bose-Einstein condensates (BEC) can act like quantum dielectric materials, which react to light fields, and thus co-manipulation of light-matter waves is possible. So far, the dispersion properties of BEC for optical fields with a large degree of detuning have not been investigated. Accordingly, in this paper, we analytically obtain formulas for the first- and second-order dispersion. Our numerical calculation shows that the refractive index and the second-order dispersion coefficient depend on the properties of red or blue detuning. In the case of red detuning, the refractive index is greater than 1 and the second-order dispersion is normal dispersion. In the case of blue detuning, the refractive index is less than 1 and the second-order dispersion is anomalous dispersion. The second-order dispersion coefficient changes dramatically with changes in detuning. When the detuning quantity is on the order of GHz, the BEC can function as a strong dispersion medium. The first-order dispersion is independent with red detuning or blue detuning; as the amount of detuning increases, the first-order dispersion decreases and the corresponding group velocity increases. Our research shows that BEC is a new dispersion medium for manipulating ultrashort pulse light.
  • loading
  • [1]
    GEORGESCU I M, ASHHAB S, NORI F. Quantum simulation [J]. Review of Modern Physics , 2014, 86(1): 153-185. DOI:  10.1103/RevModPhys.86.153.
    [2]
    BLOCH I. Ultracold quantum gases in optical lattices [J]. Nature Physics, 2005(1): 23-30. DOI:  10.1038/nphys138.
    [3]
    BLOCH I, DALIBARD J, NASCIMBENE S. Quantum simulations with ultracold quantum gases [J]. Nature Physics , 2012, 8(4): 267-276. DOI:  10.1038/nphys2259.
    [4]
    BLOCH I, DALIBARD J, ZWERGER W. Many-body physics with ultracold gases [J]. Review of Modern Physics , 2008, 80(3): 885-964. DOI:  10.1103/RevModPhys.80.885.
    [5]
    DUNNINGHAM J, BURNETT K, PHILLIPS W D. Bose-Einstein condensates and precision measurements [J]. Philosophical Transactions of the Royal Society A, 2006, 363(1834): 2165-2175. DOI:  10.1098/rsta.2005.1636.
    [6]
    BOIXO S, DATTA A, DAVIS M J, et al. Quantum metrology with Bose-Einstein condensates [J]. AIP Conference Proceedings, 2009, 1110(1): 423-426. DOI:  10.1063/1.3131366.
    [7]
    GINSBERG N S, GARNER S R, HAU L V. Coherent control of optical information with matter wave dynamics [J]. Nature, 2007, 445: 623-626. DOI:  10.1038/nature05493.
    [8]
    HANSEN A, LESLIE L S, BHATTACHARYA M, et al. Transfer and storage of optical information in a spinor Bose-Einstein condensate [J]. OSA/FiO/LS, 2010: LTuJ1.
    [9]
    CHU S. Cold atoms and quantum control [J]. Nature, 2002, 416: 206-210. DOI:  10.1038/416206a.
    [10]
    HOHENESTER U, REKDAL P K, BORZ A, et al. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps [J]. Physical Review A, 2007, 75: 023602. DOI:  10.1103/PhysRevA.75.023602.
    [11]
    HAROUTYUNYAN H L. Coherent control of single atoms and Bose-Einstein condensates by light[D]. Netherlands: Leiden University, 2004.
    [12]
    ZHAO L, JIANG J, TANG T, et al. Dynamics in spinor condensates tuned by a microwave dressing field [J]. Physical Review A, 2014, 89(2): 023608. DOI:  10.1103/PhysRevA.89.023608.
    [13]
    CHANG M S, QIN Q, ZHANG W, et al. Coherent spinor dynamics in a spin-1 Bose condensate [J]. Nature Physics , 2005, 1(2): 111-116. DOI:  10.1038/nphys153.
    [14]
    BOHI P, RIEDEL M F, HOFFROGGE J, et al. Coherent manipulation of Bose-Einstein condensates with state-dependent microwave potentials on an atom chip [J]. Nature Physics , 2009, 5(8): 592-597. DOI:  10.1038/nphys1329.
    [15]
    ROBB G R, TESIO E, OPPO G L, et al. Quantum threshold for optomechanical self-structuring in a Bose-Einstein condensate [J]. Physical Review Letters, 2015, 114(17): 173903. DOI:  10.1103/PhysRevLett.114.173903.
    [16]
    OSTERMANN S, PIAZZA F, RITSCH H. Spontaneous crystallization of light and ultracold atoms [J]. Physical Review X, 2016, 6(2): 021026. DOI: 10.1103/PhysRevX.6.021026.
    [17]
    RODRIGUES J D, RODRIGUES J A, FERREIRA A V, et al. Photon bubble turbulence in cold atomic gases[J]. arXiv, 2016: 1604.08114v1.
    [18]
    LI K, DENG L, HAGLEY E W, et al. Matter-wave self-imaging by atomic center-of-mass motion induced interference [J]. Physical Review Letters, 2008, 101(25): 250401. DOI:  10.1103/PhysRevLett.101.250401.
    [19]
    ZHU J, DONG G, SHNEIDER M N, et al. Strong local-field effect on the dynamics of a dilute atomic gas irradiated by two counterpropagating optical fields: Beyond standard optical lattices [J]. Physical Review Letters, 2011, 106(21): 210403. DOI:  10.1103/PhysRevLett.106.210403.
    [20]
    DONG G, ZHU J, ZHANG W, et al. Polaritonic solitons in a Bose-Einstein condensate trapped in a soft optical lattice [J]. Physical Review Letters, 2013, 110(25): 250401. DOI:  10.1103/PhysRevLett.110.250401.
    [21]
    BONS P C, DE HAAS R, DE JONG D, et al. Quantum enhancement of the index of refraction in a Bose-Einstein condensate [J]. Physical Review Letters, 2016, 116(17): 173602. DOI:  10.1103/PhysRevLett.116.173602.
    [22]
    秦杰利. 旋量玻色-爱因斯坦凝聚体与微波相互作用中的磁局域场效应 [D]. 上海: 华东师范大学, 2016.
    [23]
    朱江. 光与超冷原子相互作用中的局域场效应 [D]. 上海: 华东师范大学, 2014.
    [24]
    COMPARAT D, FIORETTI A, STERN G, et al . Optimized production of large Bose-Einstein condensates [J]. Physical Review A, 2006, 73: 043410. DOI:  10.1103/PhysRevA.73.043410.
    [25]
    STREED E W, CHIKKATUR A P, GUSTAVSON T L, et al. Large atom number Bose-Einstein condensate machines [J]. Review of Scientific Instruments, 2006, 77(2): 023106. DOI:  10.1063/1.2163977.
    [26]
    VAN DER STAM K M, VAN OOIJEN E D, MEPPELINK R, et al. Large atom number Bose-Einstein condensate of sodium [J]. Review of Scientific Instruments, 2007, 78(1): 013102. DOI:  10.1063/1.2424439.
    [27]
    AGRAWAL G P. Nonlinear Fiber Optics[M]. 5th ed. New York: Academic Press, 2013.
    [28]
    GEHM M E. Preparation of an optically-trapped degenerate fermi gas of 6Li: Finding the route to degeneracy[D]. Durham: Duke University, 2003.
    [29]
    ZHAI Y Y, ZHANG P, CHEN X Z, et al. Bragg diffraction of a matter wave driven by a pulsed nonuniform magnetic field [J]. Physical Review A, 2013, 88: 053629. DOI:  10.1103/PhysRevA.88.053629.
    [30]
    PITAEVSKII L, STRINGARI S. Bose-Einstein Condensation[M]. Oxford: Clarendon Press, 2003.
    [31]
    PETHICK C J, SMITH H. Bose-Einstein Condensation in Dilute Gases[M]. 2nd ed. Cambridge: Cambridge University Press, 2008.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views (205) PDF downloads(4) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return