中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2021
Turn off MathJax
Article Contents
ZHOU Jun, XI Qinghua, HUANG Yiqiang, NIE Er, SUN Zhuo. Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 165-175. doi: 10.3969/j.issn.1000-5641.201922019
Citation: ZHOU Jun, XI Qinghua, HUANG Yiqiang, NIE Er, SUN Zhuo. Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 165-175. doi: 10.3969/j.issn.1000-5641.201922019

Study on the performance of I-doped TiO2 nanotube arrays for planar photocatalytic fuel cells

doi: 10.3969/j.issn.1000-5641.201922019
  • Received Date: 2019-12-18
  • Publish Date: 2021-01-27
  • The photoanode of I-doped TiO2 nanotube arrays (ITNA) prepared by anodization exhibited better degradation performance than TNA. The planar photocatalytic fuel cell (p-PFC) obtained by combining ITNA and Pt electrodes achieved a maximum decolorization rate of 93.1% when the concentration of methylene blue (MB) was 6 mg·L–1and the electrode plate spacing was 1.0 cm. The degradation of MB occurred on the surface of ITNA, which was a rate-limiting step. Compared to other structures, p-PFC had a higher photocatalytic performance and better production of h+ and ·OH, while degrading MB and other organics.
  • loading
  • [1]
    ZHAO H J, JIANG D L, ZHANG S Q, et al. Development of a direct photoelectrochemical method for determination of chemical oxygen demand [J]. Analytical Chemistry, 2004, 76(1): 155-160. DOI:  10.1021/ac0302298.
    [2]
    ZANONI M V B, SENE J J, ANDERSON M A. Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157(1): 55-63. DOI:  10.1016/S1010-6030(02)00320-9.
    [3]
    REHMAN S, ULLAH R, BUTT A M, et al. Strategies of making TiO2 and ZnO visible light active [J]. Journal of Hazardous Materials, 2009, 170(2/3): 560-569. DOI:  10.1016/j.jhazmat.2009.05.064.
    [4]
    LI X Z, LI F B, FAN C M, et al. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO2 mesh photoelectrode [J]. Water Research, 2002, 36(9): 2215-2224. DOI:  10.1016/S0043-1354(01)00440-7.
    [5]
    WANG Y W, HUANG Y, HO W K, et al. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation [J]. Journal of Hazardous Materials, 2009, 169(1/2/3): 77-87. DOI:  10.1016/j.jhazmat.2009.03.071.
    [6]
    XIE D M, FENG S J, LIN Y, et al. Preparation of porous nanocrystalline TiO2 electrode by screen-printing technique [J]. Chinese Science Bulletin, 2007, 52(18): 2481-2485. DOI:  10.1007/s11434-007-0372-0.
    [7]
    LIANOS P. Production of electricity and hydrogen by photocatalytic degradation of organic wastes in a photoelectrochemical cell: The concept of the photofuelcell: A review of a re-emerging research field [J]. Journal of Hazardous Materials, 2011, 185(2/3): 575-590.
    [8]
    WU Z Y, ZHAO G H, ZHANG Y J, et al. A solar-driven photocatalytic fuel cell with dual photoelectrode for simultaneous wastewater treatment and hydrogen production [J]. Journal of Materials Chemistry A, 2015, 3(7): 3416-3424. DOI:  10.1039/C4TA06604A.
    [9]
    LIU Y B, LI J H, ZHOU B X, et al. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell [J]. Water Research, 2011, 45(13): 3991-3998. DOI:  10.1016/j.watres.2011.05.004.
    [10]
    SZKODA M, SIUZDAK K, LISOWSKA-OLEKSIAK A. Optimization of electrochemical doping approach resulting in highly photoactive iodine-doped titania nanotubes [J]. Journal of Solid State Electrochemistry, 2016, 20(2): 563-569. DOI:  10.1007/s10008-015-3081-7.
    [11]
    TIAN S Y, GUO J H, ZHAO C, et al. Preparation of cellulose/graphene oxide composite membranes and their application in removing organic contaminants in wastewater [J]. Journal of Nanoscience and Nanotechnology, 2019, 19(4): 2147-2153. DOI:  10.1166/jnn.2019.15808.
    [12]
    LIU Y B, LI J H, ZHOU B X, et al. A TiO2-nanotube-array-based photocatalytic fuel cell using refractory organic compounds as substrates for electricity generation [J]. Chemical Communications, 2011, 47(37): 10314-10316. DOI:  10.1039/c1cc13388h.
    [13]
    DENG P C, HU J Z, WANG H Z, et al. Hydrothermal preparation and comparative study of halogen-doping TiO2 photocatalysts [J]. Journal of Advanced Oxidation Technologies, 2010, 13(2): 200-205.
    [14]
    SU W Y, ZHANG Y F, LI Z H, et al. Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis [J]. Langmuir, 2008, 24(7): 3422-3428. DOI:  10.1021/la701645y.
    [15]
    TOJO S, TACHIKAWA T, FUJITSUKA M, et al. Iodine-doped TiO2 photocatalysts: Correlation between band structure and mechanism [J]. The Journal of Physical Chemistry C, 2008, 112(38): 14948-14954. DOI:  10.1021/jp804985f.
    [16]
    WANG W A, SHI Q, WANG Y P, et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method [J]. Applied Surface Science, 2011, 257(8): 3688-3696. DOI:  10.1016/j.apsusc.2010.11.108.
    [17]
    DEVI L G, KAVITHA R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity [J]. Applied Catalysis B: Environmental, 2013, 140: 559-587.
    [18]
    MA Y, FU J W, XIA T, et al. Low temperature synthesis of iodine-doped TiO2 nanocrystallites with enhanced visible-induced photocatalytic activity [J]. Applied Surface Science, 2011, 257(11): 5046-5051. DOI:  10.1016/j.apsusc.2011.01.019.
    [19]
    LIU D, WANG J Q, ZHOU J, et al. Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study [J]. Chemical Engineering Journal, 2019, 369: 968-978. DOI:  10.1016/j.cej.2019.03.140.
    [20]
    DAGHRIR R, DROGUI P, ROBERT D. Photoelectrocatalytic technologies for environmental applications [J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2012, 238: 41-52.
    [21]
    LEE W J, RAMASAMY E, LEE D Y, et al. Glass frit overcoated silver grid lines for nano-crystalline dye sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183(1/2): 133-137. DOI:  10.1016/j.jphotochem.2006.03.006.
    [22]
    JANZEN E G, KOTAKE Y, HINTON R D. Stabilities of hydroxyl radical spin adducts of PBN-type spin traps [J]. Free Radical Biology and Medicine, 1992, 12(2): 169-173. DOI:  10.1016/0891-5849(92)90011-5.
    [23]
    GRATZEL M. Photoelectrochemical cells [J]. Nature, 2001, 414(6861): 338-344. DOI:  10.1038/35104607.
    [24]
    GARCIA-SEGURA S, BRILLAS E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2017, 31: 1-35. DOI:  10.1016/j.jphotochemrev.2017.01.005.
    [25]
    ANTONIADOU M, LIANOS P. Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell [J]. Applied Catalysis B: Environmental, 2010, 99(1/2): 307-313.
    [26]
    SU Y L, XIAO Y T, FU X, et al. Photocatalytic properties and electronic structures of iodine-doped TiO2 nanotubes [J]. Materials Research Bulletin, 2009, 44(12): 2169-2173. DOI:  10.1016/j.materresbull.2009.08.017.
    [27]
    ZHOU L, DENG J, ZHAO Y B, et al. Preparation and characterization of N-I co-doped nanocrystal anatase TiO2 with enhanced photocatalytic activity under visible-light irradiation [J]. Materials Chemistry and Physics, 2009, 117(2/3): 522-527.
    [28]
    HO-KIMURA S, MONIZ S J A, HANDOKO A D, et al. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes [J]. Journal of Materials Chemistry A, 2014, 2(11): 3948-3953. DOI:  10.1039/c3ta15268e.
    [29]
    ANTONIADOU M, LIANOS P. Photoelectrochemical oxidation of organic substances over nanocrystalline titania: Optimization of the photoelectrochemical cell [J]. Catalysis Today, 2009, 144(1/2): 166-171.
    [30]
    MENG X C, ZHANG Z S, LI X G. Synergetic photoelectrocatalytic reactors for environmental remediation: A review [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 83-101. DOI:  10.1016/j.jphotochemrev.2015.07.003.
    [31]
    MATSUOKA M, KITANO M, FUKUMOTO S, et al. The effect of the hydrothermal treatment with aqueous NaOH solution on the photocatalytic and photoelectrochemical properties of visible light-responsive TiO2 thin films [J]. Catalysis Today, 2008, 132(1/2/3/4): 159-164.
    [32]
    ANTONIADOU M, LIANOS P. Production of electricity by photoelectrochemical oxidation of ethanol in a photo fuel cell [J]. Applied Catalysis B, Environmental, 2010, 99(1/2): 307-313.
    [33]
    ANTONIADOU M, KONDARIDES D I, LABOU D, et al. An efficient photoelectrochemical cell functioning in the presence of organic wastes [J]. Solar Energy Materials and Solar Cells, 2009, 94(3): 592-597.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views (104) PDF downloads(0) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return