中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 2
Mar.  2020
Turn off MathJax
Article Contents
HUANG Binbing, XIE Yan, XIE Wenhui, ZHAO Zhenjie, LI Xin. Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001
Citation: HUANG Binbing, XIE Yan, XIE Wenhui, ZHAO Zhenjie, LI Xin. Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets[J]. Journal of East China Normal University (Natural Sciences), 2020, (2): 131-139. doi: 10.3969/j.issn.1000-5641.201933001

Preparation and fluorescence detection properties of ZnO nanostructure based on microdroplets

doi: 10.3969/j.issn.1000-5641.201933001
  • Received Date: 2019-04-03
  • Publish Date: 2020-03-01
  • In this paper, we discuss ZnO nanostructures synthesized by a hydrothermal method in a droplet microreactor. The microfluidic chip used integrates a multi-function unit that includes a T-channel for droplet formation, a Y-channel for droplet fusion, and an S-channel for rapid mixing and observation of the nanoparticle formation process. By adjusting the flow rates of the aqueous phase and the oil phase, we studied the morphology and size of droplets; fluorescence detection of the ZnO nanostructure synthesized, moreover, was evaluated by an FITC-labeled goat anti-bovine IgG. This work shows that ZnO nanostructures can be prepared by fluid dynamic coupling of droplets and that the morphology and size of the nanostructures vary with droplet size. When the flow rates of the oil phase, ammonia water, and ferric solution were 600, 30, and 90 μL/h, respectively, the ZnO nanostructure synthesized at 75 °C showed optimal fluorescence detection performance.
  • loading
  • [1]
    TONG H, OUYANG S X, BI Y P, et al. Nano-photocatalytic materials: Possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229-251. DOI:  10.1002/adma.201102752.
    [2]
    LIM S Y, SHEN W, GAO Z Q. Carbon quantum dots and their applications [J]. Chemical Society Reviews, 2015, 44(1): 362-381. DOI:  10.1039/C4CS00269E.
    [3]
    LI Q L, MAHENDRA S, LYON D Y, et al. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications [J]. Water Research, 2008, 42(18): 4591-4602. DOI:  10.1016/j.watres.2008.08.015.
    [4]
    HUANG X, ZENG Z Y, ZHANG H. Metal dichalcogenide nanosheets: preparation, properties and applications [J]. Chemical Society Reviews, 2013, 42(5): 1934-1946. DOI:  10.1039/c2cs35387c.
    [5]
    GUO L X, SHI Y C, LIU X F, et al. Enhanced fluorescence detection of proteins using ZnO nanowires integrated inside microfluidic chips [J]. Biosensors and Bioelectronics, 2018, 99: 368-374. DOI:  10.1016/j.bios.2017.08.003.
    [6]
    SURESH G, RAMANUJAN R V, CHONG T W, et al. Poly(N-isopropyl acrylamide) coated magnetite nanoparticles as contrast agents for magnetic resonance imaging [J]. Nanoscience and Nanotechnology Letters, 2015, 7(1): 15-19. DOI:  10.1166/nnl.2015.1944.
    [7]
    DEATSCH A E, EVANS B A. Heating efficiency in magnetic nanoparticle hyperthermia [J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 163-172. DOI:  10.1016/j.jmmm.2013.11.006.
    [8]
    WANG Z L. From nanogenerators to piezotronics-A decade-long study of ZnO nanostructures [J]. MRS Bulletin, 2012, 37(9): 814-827. DOI:  10.1557/mrs.2012.186.
    [9]
    ARYA S K, SAHA S, RAMIREZ-VICK J E, et al. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review [J]. Analytica Chimica Acta, 2012, 737: 1-21. DOI:  10.1016/j.aca.2012.05.048.
    [10]
    DORNIANI D, BIN HUSSEIN M Z, KURA A U, et al. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system [J]. Drug Design Development and Therapy, 2013(7): 1015-1026.
    [11]
    WANG H Y, XU L, WU Y Q, et al. Plasmon resonance-induced photoluminescence enhancement of CdTe/Cds quantum dots thin films [J]. Applied Surface Science, 2016, 387: 1281-1284. DOI:  10.1016/j.apsusc.2016.06.092.
    [12]
    GIL S, SILVA J M, MANO J F. Magnetically multilayer polysaccharide membranes for biomedical applications [J]. Acs Biomaterials Science & Engineering, 2015, 1(10): 1016-1025.
    [13]
    ZHOU X T, LIN T H, LIU Y H, et al. Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation [J]. Acs Applied Materials & Interfaces, 2013, 5(20): 10067-10073.
    [14]
    GUO L X, SHI Y C, ZHAO Z J, et al. Fabrication and fluorescence biodetection of ZnO nanorods using microfluidic technology [J]. Journal of Inorganic Materials, 2018, 33(10): 1103-1109. DOI:  10.15541/jim20180005.
    [15]
    ALIVISATOS A P. Birth of a nanoscience building block [J]. Acs Nano, 2008, 2(8): 1514-1516. DOI:  10.1021/nn800485f.
    [16]
    BURDA C, CHEN X B, NARAYANAN R, et al. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105(4): 1025-1102. DOI:  10.1021/cr030063a.
    [17]
    GAO M R, XU Y F, JIANG J, et al. Nanostructured metal chalcogenides: Synthesis, modification, and applications in energy conversion and storage devices [J]. Chemical Society Reviews, 2013, 42(7): 2986-3017. DOI:  10.1039/c2cs35310e.
    [18]
    MARRE S, JENSEN K F. Synthesis of micro and nanostructures in microfluidic systems [J]. Chemical Society Reviews, 2010, 39(3): 1183-1202. DOI:  10.1039/b821324k.
    [19]
    WANG J M, SONG Y J. Microfluidic synthesis of nanohybrids [J]. Small, 2017, 13(18): 19.
    [20]
    DUFFY D C, MCDONALD J C, SCHUELLER O J A, et al. Rapid prototyping of microfluidic systems in poly (dimethylsiloxane) [J]. Analytical Chemistry, 1998, 70(23): 4974-4984. DOI:  10.1021/ac980656z.
    [21]
    CARRUTHERS C W, GERDTS JR C, JOHNSON M D, et al. A microfluidic, high throughput protein crystal growth method for microgravity [J]. PloS One, 2013, 8(11): e82298.
    [22]
    FEUERBORN A, PRASTOWO A, COOK P R, et al. Merging drops in a teflon tube, and transferring fluid between them, illustrated by protein crystallization and drug screening [J]. Lab on a Chip, 2015, 15(18): 3766-3775. DOI:  10.1039/C5LC00726G.
    [23]
    NIU G, RUDITSKIY A, VARA M, et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors [J]. Chemical Society Reviews, 2015, 44(16): 5806-5820. DOI:  10.1039/C5CS00049A.
    [24]
    SAUTER C, DHOUIB K, LORBER B. From macrofluidics to microfluidics for the crystallization of biological macromolecules [J]. Crystal Growth & Design, 2007, 7(11): 2247-2250.
    [25]
    PHILLIPS T W, LIGNOS I G, MACEICZYK R M, et al. Nanocrystal synthesis in microfluidic reactors: Where next? [J]. Lab on a Chip, 2014, 14(17): 3172-3180. DOI:  10.1039/C4LC00429A.
    [26]
    PAN L J, TU J W, MA H T, et al. Controllable synthesis of nanocrystals in droplet reactors [J]. Lab on a Chip, 2018, 18(1): 41-56. DOI:  10.1039/C7LC00800G.
    [27]
    REDDY L H, ARIAS J L, NICOLAS J, et al. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications [J]. Chemical Reviews, 2012, 112(11): 5818-5878. DOI:  10.1021/cr300068p.
    [28]
    BARET J C. Surfactants in droplet-based microfluidics [J]. Lab on a Chip, 2012, 12(3): 422-433. DOI:  10.1039/C1LC20582J.
    [29]
    COSSAIRT B M. Shining light on indium phosphide quantum dots: Understanding the interplay among precursor conversion, nucleation, and growth [J]. Chemistry of Materials, 2016, 28(20): 7181-7189. DOI:  10.1021/acs.chemmater.6b03408.
    [30]
    DEMIANETS L N, KOSTOMAROV D V, KUZ'MINA I P, et al. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions [J]. Crystallography Reports, 2002, 47: S86-S98. DOI:  10.1134/1.1529962.
    [31]
    JANG J M, KIM S D, CHOI H M, et al. Morphology change of self-assembled ZnO 3D nanostructures with different pH in the simple hydrothermal process [J]. Materials Chemistry and Physics, 2009, 113(1): 389-394. DOI:  10.1016/j.matchemphys.2008.07.108.
    [32]
    LIZAMA-TZEC F I, GARCIA-RODRIGUEZ R, RODRIGUEZ-GATTORNO G, et al. Influence of morphology on the performance of ZnO-based dye-sensitized solar cells [J]. Rsc Advances, 2016, 6(44): 37424-37433. DOI:  10.1039/C5RA25618F.
    [33]
    MOHAMMED M I, DESMULLIEZ M P Y. Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: A review [J]. Lab on a Chip, 2011, 11(4): 569-595. DOI:  10.1039/C0LC00204F.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article views (122) PDF downloads(5) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return