中国综合性科技类核心期刊(北大核心)

中国科学引文数据库来源期刊(CSCD)

美国《化学文摘》(CA)收录

美国《数学评论》(MR)收录

俄罗斯《文摘杂志》收录

Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Name
E-mail
Phone
Title
Content
Verification Code
Issue 1
Jan.  2021
Turn off MathJax
Article Contents
LIANG Shuang, ZHONG Yichi, XIE Wei. Coupling behavior of WSe2 exciton and photon in an optical microcavity[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 112-118. doi: 10.3969/j.issn.1000-5641.202022003
Citation: LIANG Shuang, ZHONG Yichi, XIE Wei. Coupling behavior of WSe2 exciton and photon in an optical microcavity[J]. Journal of East China Normal University (Natural Sciences), 2021, (1): 112-118. doi: 10.3969/j.issn.1000-5641.202022003

Coupling behavior of WSe2 exciton and photon in an optical microcavity

doi: 10.3969/j.issn.1000-5641.202022003
  • Received Date: 2020-03-06
  • Publish Date: 2021-01-27
  • In this paper, we study the strong and weak coupling between excitons of a WSe2 monomolecular thin film and a light field in a self-made Fabry–Pérot semiconductor microcavity at 300 K. The optical properties of the sample were studied using a micro-fluorescence / white light reflection spectroscopy system with integrated angular resolution; the formation of exciton polaritons was observed in the strong coupling region, corresponding to a Rabi splitting energy of 46.7 meV. The theoretical fitting results agree with the experimental phenomena. This lays the foundation for further research on the coherent properties of exciton polaritons, and the study also provide ideas for the application of industrial optoelectronic devices in the future..
  • loading
  • [1]
    WEISBUCH C, NISHIOKA M, ISHIKAWA A, et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity [J]. Physical Review Letters, 1992, 69(23): 3314-3317.
    [2]
    DENG H, WEIHS G, SANTORI C, et al. Condensation of semiconductor microcavity exciton polaritons [J]. Science, 2002, 298(5591): 199-202.
    [3]
    WOUTERS M, CARUSOTTO I. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons [J]. Physical Review Letters, 2007, 99(14): 140402.
    [4]
    KASPRZAK J, RICHARD M, KUNDERMANN S, et al. Bose-Einstein condensation of exciton polaritons [J]. Nature, 2006, 443: 409-414.
    [5]
    BALILI R, HARTWELL V, SNOKE D, et al. Bose-Einstein condensation of microcavity polaritons in a trap [J]. Science, 2007, 316(5827): 1007-1010.
    [6]
    UTSUNOMIYA S, TIAN L, ROUMPOS G, et al. Observation of Bogoliubov excitations in exciton-polariton condensates [J]. Nature Physics, 2008, 4(9): 700-705.
    [7]
    AMO A, SANVITTO D, LAUSSY F P, et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity [J]. Nature, 2009, 457: 291-U3.
    [8]
    AMO A, LEFRERE J, PIGEON S, et al. Superfluidity of polaritons in semiconductor microcavities [J]. Nature Physics, 2009, 5(11): 805-810.
    [9]
    SICH M, KRIZHANOVSKII D N, SKOLNICK M S, et al. Observation of bright polariton solitons in a semiconductor microcavity [J]. Nature Photonics, 2012, 6(1): 50-55.
    [10]
    WERTZ E, FERRIER L, SOLNYSHKOV D D, et al. Spontaneous formation and optical manipulation of extended polariton condensates [J]. Nature Physics, 2010, 6(11): 860-864.
    [11]
    GEIM A K. Graphene: Status and prospects [J]. Science, 2009, 324(5934): 1530-1534.
    [12]
    GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
    [13]
    MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides [J]. Nature Reviews Materials, 2017, 2(8): 17033.
    [14]
    SHI W, YE J T, ZHANG Y J, et al. Superconductivity series in transition metal dichalcogenides by ionic gating [J]. Scientific Reports, 2015, 8(5): 12534.
    [15]
    JO S, COSTANZO D, BERGER H, et al. Electrostatically induced superconductivity at the surface of WS2 [J]. Nano Letters, 2015, 15(2): 1197-1202.
    [16]
    MAK K F, SHAN J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides [J]. Nature Photonics, 2016, 10(4): 216-226.
    [17]
    PU J, TAKENOBU T S. Monolayer transition metal dichalcogenides as light sources [J]. Advanced materials, 2018, 30(33): 1707627.
    [18]
    KOPPENS F H L, MUELLER T, AVOURIS P, et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems [J]. Nature Nanotechnology, 2014, 9(10): 780-793.
    [19]
    WANG G, CHERNIKOV A, GLAZOV M M, et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides [J]. Reviews of Modern Physics, 2018, 90(2): 021001.
    [20]
    MACIEJ K, MACLEJ R, MOLAS A A, et al. Optical properties of atomically thin transition metal dichalcogenides: Observations and puzzles [J]. Nanophotonics, 2017, 6(6): 1289-1308.
    [21]
    BALLARINI D, DE GIORGI M, CANCELLIERI E, et al. All-optical polariton transistor [J]. Nature Communication, 2013, 4(5): 1778.
    [22]
    DREISMANN A, OHADI H, REDONDO Y, et al. A sub-femtojoule electrical spin-switch based on optically trapped polariton condensates [J]. Nature Materials, 2016, 15(10): 1074-1078.
    [23]
    CHRISTOPOULOS S, VON HOGERSTHAL G, BALDASSARRI H, et al. Room-temperature polariton lasing in semiconductor microcavities [J]. Physical Review Letters, 2007, 98(12): 126405.
    [24]
    STANLET R P, HOUDRE R, OESTER U, et al. Ultrahigh finesse microcavity with distributed Bragg reflectors [J]. Applied Physics Letters, 1994, 65(15): 1883-1885.
    [25]
    AKAHANE Y, ASANO T, NODA S, et al. High-Q photonic nanocavity in a two-dimensional photonic crystal [J]. Nature, 2003, 425: 944-947.
    [26]
    SRINIVASAN K, PAINTER O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system [J]. Nature, 2007, 450: 862-865.
    [27]
    SPLENDIANI A, SUN L, ZHANG Y, et al. Emerging photoluminescence in monolayer MoS2 [J]. Nano Letters, 2010, 10(4): 1271-1275.
    [28]
    MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: A new direct-gap semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805.
    [29]
    NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669.
    [30]
    YUN W S, HAN S W, HONG S C, et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te) [J]. Physical Review B, 2012, 85(3): 033305.
    [31]
    GIOVANNA P, LUCIO C A. Exciton-light coupling in single and coupled semiconductor microcavities: Polariton dispersion and polarization splitting [J]. Physical Review B, 1999, 5082: 59.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article views (82) PDF downloads(3) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return